/******************************************************************************* OpenAirInterface Copyright(c) 1999 - 2014 Eurecom OpenAirInterface is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. OpenAirInterface is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with OpenAirInterface.The full GNU General Public License is included in this distribution in the file called "COPYING". If not, see . Contact Information OpenAirInterface Admin: openair_admin@eurecom.fr OpenAirInterface Tech : openair_tech@eurecom.fr OpenAirInterface Dev : openair4g-devel@lists.eurecom.fr Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE *******************************************************************************/ #include #include #include #include #include "defs.h" #include "SIMULATION/RF/defs.h" #include void tv_channel(channel_desc_t *desc,double complex ***H,uint16_t length); double frand_a_b(double a, double b); void tv_conv(double complex **h, double complex *x, double complex *y, uint16_t nb_samples, uint8_t nb_taps, int delay); void multipath_tv_channel(channel_desc_t *desc, double **tx_sig_re, double **tx_sig_im, double **rx_sig_re, double **rx_sig_im, uint16_t length, uint8_t keep_channel) { double complex **tx,**rx,***H_t,*rx_temp;//, *tv_H_t; double path_loss = pow(10,desc->path_loss_dB/20); int i,j,k,dd; dd = abs(desc->channel_offset); #ifdef DEBUG_CH printf("[TV CHANNEL] keep = %d : path_loss = %g (%f), nb_rx %d, nb_tx %d, dd %d, len %d max_doppler %d\n",keep_channel,path_loss,desc->path_loss_dB,desc->nb_rx,desc->nb_tx,dd,desc->channel_length, desc->max_Doppler); #endif tx = (double complex **)malloc(desc->nb_tx*sizeof(double complex)); rx = (double complex **)malloc(desc->nb_rx*sizeof(double complex)); H_t= (double complex ***) malloc(desc->nb_tx*desc->nb_rx*sizeof(double complex **)); // tv_H_t = (double complex *) malloc(length*sizeof(double complex)); rx_temp= (double complex *) calloc(length,sizeof(double complex)); for(i=0; inb_tx; i++) { tx[i] = (double complex *)calloc(length,sizeof(double complex)); } for(i=0; inb_rx; i++) { rx[i] = (double complex *)calloc(length,sizeof(double complex)); } for(i=0; inb_tx*desc->nb_rx; i++) { H_t[i] = (double complex **) malloc(length*sizeof(double complex *)); for(j=0; jnb_taps,sizeof(double complex)); } } for (i=0; inb_tx; i++) { for(j=0; jnb_rx; i++) { for(j=0; jnb_tx; j++) { tv_conv(H_t[i+(j*desc->nb_rx)],tx[j],rx_temp,length,desc->nb_taps,dd); for(k=0; knb_rx; i++) { for(j=0; jnb_tx; i++) { free(tx[i]); } free(tx); for(i=0; inb_rx; i++) { free(rx[i]); } free(rx); for(i=0; inb_rx*desc->nb_tx; i++) { for(j=0; jnb_paths,sizeof(double)); phi_rad = (double *)calloc(desc->nb_paths,sizeof(double)); w_Hz = (double *)calloc(desc->nb_paths,sizeof(double)); for(i=0; inb_paths; i++) { w_Hz[i]=desc->max_Doppler*cos(frand_a_b(0,2*pi)); phi_rad[i]=frand_a_b(0,2*pi); } if(desc->ricean_factor == 1) { for(i=0; inb_paths; i++) { alpha[i]=1/sqrt(desc->nb_paths); } } else { alpha[0]=sqrt(desc->ricean_factor/(desc->ricean_factor+1)); for(i=1; inb_paths; i++) { alpha[i] = (1/sqrt(desc->nb_paths-1))*(sqrt(1/(desc->ricean_factor+1))); } } /* // This is the code when we only consider a SISO case for(i=0;inb_taps;j++) { for(p=0;pnb_paths;p++) { H[i][j] += sqrt(desc->amps[j]/2)*alpha[p]*cexp(-I*(2*pi*w_Hz[p]*i*(1/(desc->sampling_rate*1e6))+phi_rad[p])); } } } for(j=0;jnb_paths;j++) { phi_rad[j] = fmod(2*pi*w_Hz[j]*(length-1)*(1/desc->sampling_rate)+phi_rad[j],2*pi); } */ // if MIMO for (i=0; inb_rx; i++) { for(j=0; jnb_tx; j++) { for(k=0; knb_taps; l++) { H[i+(j*desc->nb_rx)][k][l] = 0; for(p=0; pnb_paths; p++) { H[i+(j*desc->nb_rx)][k][l] += sqrt(desc->amps[l]/2)*alpha[p]*cexp(I*(2*pi*w_Hz[p]*k*(1/(desc->sampling_rate*1e6))+phi_rad[p])); } } } for(j=0; jnb_paths; j++) { phi_rad[j] = fmod(2*pi*w_Hz[j]*(length-1)*(1/desc->sampling_rate)+phi_rad[j],2*pi); } } } free(alpha); free(w_Hz); free(phi_rad); } // time varying convolution void tv_conv(double complex **h, double complex *x, double complex *y, uint16_t nb_samples, uint8_t nb_taps, int dd) { int i,j; for(i=0; i<((int)nb_samples-dd); i++) { for(j=0; jj) y[i+dd] += creal(h[i][j])*creal(x[i-j])-cimag(h[i][j])*cimag(x[i-j]) + I*(creal(h[i][j])*cimag(x[i-j])+cimag(h[i][j])*creal(x[i-j])); } } } double frand_a_b(double a, double b) { return (rand()/(double)RAND_MAX)*(b-a)+a; }