aka_functions.c 15.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/*-------------------------------------------------------------------
 *          Example algorithms f1, f1*, f2, f3, f4, f5, f5*
 *-------------------------------------------------------------------
 *
 * A sample implementation of the example 3GPP authentication and
 * key agreement functions f1, f1*, f2, f3, f4, f5 and f5*. This is
 * a byte-oriented implementation of the functions, and of the block
 * cipher kernel function Rijndael.
 *
 * This has been coded for clarity, not necessarily for efficiency.
 *
 * The functions f2, f3, f4 and f5 share the same inputs and have
 * been coded together as a single function. f1, f1* and f5* are
 * all coded separately.
 * From 3GPP 35.206-900
 *-----------------------------------------------------------------*/

#include "aka_functions.h"
#include "nas_log.h"

/*--------- Operator Variant Algorithm Configuration Field --------*/
/*------- Insert your value of OP here -------*/
/* PFT OP used currently in HSS (OPENAIRHSS/auc/kdf.c) */
24 25 26 27 28 29 30 31 32 33 34
#define OAI_LTEBOX

#ifdef OAI_LTEBOX
//1006020f0a478bf6b699f15c062e42b3
/*u8 OP[16] = {0xb3, 0x42, 0x2e, 0x06, 0x5c, 0xf1, 0x99, 0xb6,
             0xf6, 0x8b, 0x47, 0x0a, 0x0f, 0x02, 0x06, 0x10
	     };*/
u8 OP[16] = {0x10, 0x06, 0x02, 0x0f, 0x0a, 0x47, 0x8b, 0xf6,
             0xb6, 0x99, 0xf1, 0x5c, 0x06, 0x2e, 0x42, 0xb3
};
#else
35 36 37
u8 OP[16] = {0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
             0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11
            };
38
#endif
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
/*------- Insert your value of OP here -------*/

/*-------------------------------------------------------------------
 *                            Algorithm f1
 *-------------------------------------------------------------------
 *
 * Computes network authentication code MAC-A from key K, random
 * challenge RAND, sequence number SQN and authentication management
 * field AMF.
 *
 *-----------------------------------------------------------------*/
void f1    ( u8 k_pP[16], u8 rand_pP[16], u8 sqn_pP[6], u8 amf_pP[2],
             u8 mac_a_pP[8] )
{
  u8 op_c[16];
  u8 temp[16];
  u8 in1[16];
  u8 out1[16];
  u8 rijndaelInput[16];
  u8 i;
  RijndaelKeySchedule( k_pP );
  ComputeOPc( op_c );

  for (i=0; i<16; i++)
    rijndaelInput[i] = rand_pP[i] ^ op_c[i];

  RijndaelEncrypt( rijndaelInput, temp );

  for (i=0; i<6; i++) {
    in1[i]    = sqn_pP[i];
    in1[i+8] = sqn_pP[i];
  }

  for (i=0; i<2; i++) {
    in1[i+6] = amf_pP[i];
    in1[i+14] = amf_pP[i];
  }

  /* XOR op_c and in1, rotate by r1=64, and XOR *
   * on the constant c1 (which is all zeroes)   */
  for (i=0; i<16; i++)
    rijndaelInput[(i+8) % 16] = in1[i] ^ op_c[i];

  /* XOR on the value temp computed before */
  for (i=0; i<16; i++)
    rijndaelInput[i] ^= temp[i];

  RijndaelEncrypt( rijndaelInput, out1 );

  for (i=0; i<16; i++)
    out1[i] ^= op_c[i];

  for (i=0; i<8; i++)
    mac_a_pP[i] = out1[i];

  return;
} /* end of function f1 */

/*-------------------------------------------------------------------
 *                            Algorithms f2-f5
 *-------------------------------------------------------------------
 *
 * Takes key K and random challenge RAND, and returns response RES,
 * confidentiality key CK, integrity key IK and anonymity key AK.
 *
 *-----------------------------------------------------------------*/
void f2345 ( u8 k_pP[16], u8 rand_pP[16],
             u8 res_pP[8], u8 ck_pP[16], u8 ik_pP[16], u8 ak_pP[6] )
{
  u8 op_c[16];
  u8 temp[16];
  u8 out[16];
  u8 rijndaelInput[16];
  u8 i;

  LOG_TRACE(DEBUG,
            "USIM-API  - f2345 : in k[0..15]=%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",
            k_pP[0],k_pP[1],k_pP[2], k_pP[3], k_pP[4], k_pP[5], k_pP[6], k_pP[7],
            k_pP[8],k_pP[9],k_pP[10],k_pP[11],k_pP[12],k_pP[13],k_pP[14],k_pP[15]);
  LOG_TRACE(DEBUG,
            "USIM-API  - f2345 : in rand[0..15]=%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",
            rand_pP[0],rand_pP[1],rand_pP[2], rand_pP[3], rand_pP[4], rand_pP[5], rand_pP[6], rand_pP[7],
            rand_pP[8],rand_pP[9],rand_pP[10],rand_pP[11],rand_pP[12],rand_pP[13],rand_pP[14],rand_pP[15]);

  RijndaelKeySchedule( k_pP );
  ComputeOPc( op_c );

  for (i=0; i<16; i++)
    rijndaelInput[i] = rand_pP[i] ^ op_c[i];

  RijndaelEncrypt( rijndaelInput, temp );

  /* To obtain output block OUT2: XOR OPc and TEMP,    *
   * rotate by r2=0, and XOR on the constant c2 (which *
   * is all zeroes except that the last bit is 1).     */
  for (i=0; i<16; i++)
    rijndaelInput[i] = temp[i] ^ op_c[i];

  rijndaelInput[15] ^= 1;
  RijndaelEncrypt( rijndaelInput, out );

  for (i=0; i<16; i++)
    out[i] ^= op_c[i];

  for (i=0; i<8; i++)
    res_pP[i] = out[i+8];

  for (i=0; i<6; i++)
    ak_pP[i] = out[i];

  LOG_TRACE(DEBUG,
            "USIM-API  - f2345 : out f2 res[0..7]=%02X%02X%02X%02X%02X%02X%02X%02X",
            res_pP[0],res_pP[1],res_pP[2], res_pP[3], res_pP[4], res_pP[5], res_pP[6], res_pP[7]);
  LOG_TRACE(DEBUG,
            "USIM-API  - f2345 : out f5 ak[0..5]=%02X%02X%02X%02X%02X%02X",
            ak_pP[0],ak_pP[1],ak_pP[2], ak_pP[3], ak_pP[4], ak_pP[5]);

  /* To obtain output block OUT3: XOR OPc and TEMP,        *
   * rotate by r3=32, and XOR on the constant c3 (which    *
   * is all zeroes except that the next to last bit is 1). */
  for (i=0; i<16; i++)
    rijndaelInput[(i+12) % 16] = temp[i] ^ op_c[i];

  rijndaelInput[15] ^= 2;
  RijndaelEncrypt( rijndaelInput, out );

  for (i=0; i<16; i++)
    out[i] ^= op_c[i];

  for (i=0; i<16; i++)
    ck_pP[i] = out[i];

  LOG_TRACE(DEBUG,
            "USIM-API  - f2345 : out f3 ck_pP[0..7]=%02X%02X%02X%02X%02X%02X%02X%02X",
            ck_pP[0],ck_pP[1],ck_pP[2], ck_pP[3], ck_pP[4], ck_pP[5], ck_pP[6], ck_pP[7]);

  /* To obtain output block OUT4: XOR OPc and TEMP,         *
   * rotate by r4=64, and XOR on the constant c4 (which     *
   * is all zeroes except that the 2nd from last bit is 1). */
  for (i=0; i<16; i++)
    rijndaelInput[(i+8) % 16] = temp[i] ^ op_c[i];

  rijndaelInput[15] ^= 4;
  RijndaelEncrypt( rijndaelInput, out );

  for (i=0; i<16; i++)
    out[i] ^= op_c[i];

  for (i=0; i<16; i++)
    ik_pP[i] = out[i];

  LOG_TRACE(DEBUG,
            "USIM-API  - f2345 : out f4 ik_pP[0..15]=%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",
            ik_pP[0],ik_pP[1],ik_pP[2], ik_pP[3], ik_pP[4], ik_pP[5], ik_pP[6], ik_pP[7],
            ik_pP[8],ik_pP[9],ik_pP[10],ik_pP[11],ik_pP[12],ik_pP[13],ik_pP[14],ik_pP[15]);
  return;
} /* end of function f2345 */

/*-------------------------------------------------------------------
 *                            Algorithm f1*
 *-------------------------------------------------------------------
 *
 * Computes resynch authentication code MAC-S from key K, random
 * challenge RAND, sequence number SQN and authentication management
 * field AMF.
 *
 *-----------------------------------------------------------------*/
void f1star( u8 k_pP[16], u8 rand_pP[16], u8 sqn_pP[6], u8 amf_pP[2],
             u8 mac_s_pP[8] )
{
  u8 op_c[16];
  u8 temp[16];
  u8 in1[16];
  u8 out1[16];
  u8 rijndaelInput[16];
  u8 i;
  RijndaelKeySchedule( k_pP );
  ComputeOPc( op_c );

  for (i=0; i<16; i++)
    rijndaelInput[i] = rand_pP[i] ^ op_c[i];

  RijndaelEncrypt( rijndaelInput, temp );

  for (i=0; i<6; i++) {
    in1[i]    = sqn_pP[i];
    in1[i+8] = sqn_pP[i];
  }

  for (i=0; i<2; i++) {
    in1[i+6] = amf_pP[i];
    in1[i+14] = amf_pP[i];
  }

  /* XOR op_c and in1, rotate by r1=64, and XOR *
   * on the constant c1 (which is all zeroes)   */
  for (i=0; i<16; i++)
    rijndaelInput[(i+8) % 16] = in1[i] ^ op_c[i];

  /* XOR on the value temp computed before */
  for (i=0; i<16; i++)
    rijndaelInput[i] ^= temp[i];

  RijndaelEncrypt( rijndaelInput, out1 );

  for (i=0; i<16; i++)
    out1[i] ^= op_c[i];

  for (i=0; i<8; i++)
    mac_s_pP[i] = out1[i+8];

  return;
} /* end of function f1star */

/*-------------------------------------------------------------------
 *                            Algorithm f5*
 *-------------------------------------------------------------------
 *
 * Takes key K and random challenge RAND, and returns resynch
 * anonymity key AK.
 *
 *-----------------------------------------------------------------*/
void f5star( u8 k_pP[16], u8 rand_pP[16],
             u8 ak_pP[6] )
{
  u8 op_c[16];
  u8 temp[16];
  u8 out[16];
  u8 rijndaelInput[16];
  u8 i;
  RijndaelKeySchedule( k_pP );
  ComputeOPc( op_c );

  for (i=0; i<16; i++)
    rijndaelInput[i] = rand_pP[i] ^ op_c[i];

  RijndaelEncrypt( rijndaelInput, temp );

  /* To obtain output block OUT5: XOR OPc and TEMP,         *
   * rotate by r5=96, and XOR on the constant c5 (which     *
   * is all zeroes except that the 3rd from last bit is 1). */
  for (i=0; i<16; i++)
    rijndaelInput[(i+4) % 16] = temp[i] ^ op_c[i];

  rijndaelInput[15] ^= 8;
  RijndaelEncrypt( rijndaelInput, out );

  for (i=0; i<16; i++)
    out[i] ^= op_c[i];

  for (i=0; i<6; i++)
    ak_pP[i] = out[i];

  return;
} /* end of function f5star */
/*-------------------------------------------------------------------
 * Function to compute OPc from OP and K. Assumes key schedule has
    already been performed.
 *-----------------------------------------------------------------*/
void ComputeOPc( u8 op_c_pP[16] )
{
  u8 i;
  LOG_TRACE(DEBUG,
            "USIM-API  - ComputeOPc : OP[0..15]=%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",
            OP[0],OP[1],OP[2], OP[3], OP[4], OP[5], OP[6], OP[7],
            OP[8],OP[9],OP[10],OP[11],OP[12],OP[13],OP[14],OP[15]);
  RijndaelEncrypt( OP, op_c_pP );

  for (i=0; i<16; i++)
    op_c_pP[i] ^= OP[i];
309 310 311 312 313
  LOG_TRACE(DEBUG,
            "USIM-API  - OPc[0..15]=%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X",
            op_c_pP[0],op_c_pP[1],op_c_pP[2], op_c_pP[3], op_c_pP[4], op_c_pP[5], op_c_pP[6], op_c_pP[7],
            op_c_pP[8],op_c_pP[9],op_c_pP[10],op_c_pP[11],op_c_pP[12],op_c_pP[13],op_c_pP[14],op_c_pP[15]);

314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502

  return;
} /* end of function ComputeOPc */
/*-------------------- Rijndael round subkeys ---------------------*/
u8 roundKeys[11][4][4];
/*--------------------- Rijndael S box table ----------------------*/
u8 S[256] = {
  99,124,119,123,242,107,111,197, 48, 1,103, 43,254,215,171,118,
  202,130,201,125,250, 89, 71,240,173,212,162,175,156,164,114,192,
  183,253,147, 38, 54, 63,247,204, 52,165,229,241,113,216, 49, 21,
  4,199, 35,195, 24,150, 5,154, 7, 18,128,226,235, 39,178,117,
  9,131, 44, 26, 27,110, 90,160, 82, 59,214,179, 41,227, 47,132,
  83,209, 0,237, 32,252,177, 91,106,203,190, 57, 74, 76, 88,207,
  208,239,170,251, 67, 77, 51,133, 69,249, 2,127, 80, 60,159,168,
  81,163, 64,143,146,157, 56,245,188,182,218, 33, 16,255,243,210,
  205, 12, 19,236, 95,151, 68, 23,196,167,126, 61,100, 93, 25,115,
  96,129, 79,220, 34, 42,144,136, 70,238,184, 20,222, 94, 11,219,
  224, 50, 58, 10, 73, 6, 36, 92,194,211,172, 98,145,149,228,121,
  231,200, 55,109,141,213, 78,169,108, 86,244,234,101,122,174, 8,
  186,120, 37, 46, 28,166,180,198,232,221,116, 31, 75,189,139,138,
  112, 62,181,102, 72, 3,246, 14, 97, 53, 87,185,134,193, 29,158,
  225,248,152, 17,105,217,142,148,155, 30,135,233,206, 85, 40,223,
  140,161,137, 13,191,230, 66,104, 65,153, 45, 15,176, 84,187, 22,
};

/*------- This array does the multiplication by x in GF(2^8) ------*/
u8 Xtime[256] = {
  0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30,
  32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62,
  64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94,
  96, 98,100,102,104,106,108,110,112,114,116,118,120,122,124,126,
  128,130,132,134,136,138,140,142,144,146,148,150,152,154,156,158,
  160,162,164,166,168,170,172,174,176,178,180,182,184,186,188,190,
  192,194,196,198,200,202,204,206,208,210,212,214,216,218,220,222,
  224,226,228,230,232,234,236,238,240,242,244,246,248,250,252,254,
  27, 25, 31, 29, 19, 17, 23, 21, 11, 9, 15, 13, 3, 1, 7, 5,
  59, 57, 63, 61, 51, 49, 55, 53, 43, 41, 47, 45, 35, 33, 39, 37,
  91, 89, 95, 93, 83, 81, 87, 85, 75, 73, 79, 77, 67, 65, 71, 69,
  123,121,127,125,115,113,119,117,107,105,111,109, 99, 97,103,101,
  155,153,159,157,147,145,151,149,139,137,143,141,131,129,135,133,
  187,185,191,189,179,177,183,181,171,169,175,173,163,161,167,165,
  219,217,223,221,211,209,215,213,203,201,207,205,195,193,199,197,
  251,249,255,253,243,241,247,245,235,233,239,237,227,225,231,229
};
/*-------------------------------------------------------------------
 * Rijndael key schedule function. Takes 16-byte key and creates
 * all Rijndael's internal subkeys ready for encryption.
 *-----------------------------------------------------------------*/
void RijndaelKeySchedule( u8 key[16] )
{
  u8 roundConst;
  int i, j;

  /* first round key equals key */
  for (i=0; i<16; i++)
    roundKeys[0][i & 0x03][i>>2] = key[i];

  roundConst = 1;

  /* now calculate round keys */
  for (i=1; i<11; i++) {
    roundKeys[i][0][0] = S[roundKeys[i-1][1][3]]
                         ^ roundKeys[i-1][0][0] ^ roundConst;
    roundKeys[i][1][0] = S[roundKeys[i-1][2][3]]
                         ^ roundKeys[i-1][1][0];
    roundKeys[i][2][0] = S[roundKeys[i-1][3][3]]
                         ^ roundKeys[i-1][2][0];
    roundKeys[i][3][0] = S[roundKeys[i-1][0][3]]
                         ^ roundKeys[i-1][3][0];

    for (j=0; j<4; j++) {
      roundKeys[i][j][1] = roundKeys[i-1][j][1] ^ roundKeys[i][j][0];
      roundKeys[i][j][2] = roundKeys[i-1][j][2] ^ roundKeys[i][j][1];
      roundKeys[i][j][3] = roundKeys[i-1][j][3] ^ roundKeys[i][j][2];
    }

    /* update round constant */
    roundConst = Xtime[roundConst];
  }

  return;
} /* end of function RijndaelKeySchedule */
/* Round key addition function */
void KeyAdd(u8 state[4][4], u8 roundKeys[11][4][4], int round)
{
  int i, j;

  for (i=0; i<4; i++)
    for (j=0; j<4; j++)
      state[i][j] ^= roundKeys[round][i][j];

  return;
}
/* Byte substitution transformation */
int ByteSub(u8 state[4][4])
{
  int i, j;

  for (i=0; i<4; i++)
    for (j=0; j<4; j++)
      state[i][j] = S[state[i][j]];

  return 0;
}
/* Row shift transformation */
void ShiftRow(u8 state[4][4])
{
  u8 temp;
  /* left rotate row 1 by 1 */
  temp = state[1][0];
  state[1][0] = state[1][1];
  state[1][1] = state[1][2];
  state[1][2] = state[1][3];
  state[1][3] = temp;
  /* left rotate row 2 by 2 */
  temp = state[2][0];
  state[2][0] = state[2][2];
  state[2][2] = temp;
  temp = state[2][1];
  state[2][1] = state[2][3];
  state[2][3] = temp;
  /* left rotate row 3 by 3 */
  temp = state[3][0];
  state[3][0] = state[3][3];
  state[3][3] = state[3][2];
  state[3][2] = state[3][1];
  state[3][1] = temp;
  return;
}
/* MixColumn transformation*/
void MixColumn(u8 state[4][4])
{
  u8 temp, tmp, tmp0;
  int i;

  /* do one column at a time */
  for (i=0; i<4; i++) {
    temp = state[0][i] ^ state[1][i] ^ state[2][i] ^ state[3][i];
    tmp0 = state[0][i];
    /* Xtime array does multiply by x in GF2^8 */
    tmp = Xtime[state[0][i] ^ state[1][i]];
    state[0][i] ^= temp ^ tmp;
    tmp = Xtime[state[1][i] ^ state[2][i]];
    state[1][i] ^= temp ^ tmp;
    tmp = Xtime[state[2][i] ^ state[3][i]];
    state[2][i] ^= temp ^ tmp;
    tmp = Xtime[state[3][i] ^ tmp0];
    state[3][i] ^= temp ^ tmp;
  }

  return;
}
/*-------------------------------------------------------------------
 * Rijndael encryption function. Takes 16-byte input and creates
 * 16-byte output (using round keys already derived from 16-byte
 * key).
 *-----------------------------------------------------------------*/
void RijndaelEncrypt( u8 input[16], u8 output[16] )
{
  u8 state[4][4];
  int i, r;

  /* initialise state array from input byte string */
  for (i=0; i<16; i++)
    state[i & 0x3][i>>2] = input[i];

  /* add first round_key */
  KeyAdd(state, roundKeys, 0);

  /* do lots of full rounds */
  for (r=1; r<=9; r++) {
    ByteSub(state);
    ShiftRow(state);
    MixColumn(state);
    KeyAdd(state, roundKeys, r);
  }

  /* final round */
  ByteSub(state);
  ShiftRow(state);
  KeyAdd(state, roundKeys, r);

  /* produce output byte string from state array */
  for (i=0; i<16; i++) {
    output[i] = state[i & 0x3][i>>2];
  }

  return;
} /* end of function RijndaelEncrypt */