ulsch_demodulation.c 74.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
/*
 * Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The OpenAirInterface Software Alliance licenses this file to You under
 * the OAI Public License, Version 1.0  (the "License"); you may not use this file
 * except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.openairinterface.org/?page_id=698
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 *-------------------------------------------------------------------------------
 * For more information about the OpenAirInterface (OAI) Software Alliance:
 *      contact@openairinterface.org
 */

22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
/*! \file PHY/LTE_TRANSPORT/ulsch_demodulation.c
* \brief Top-level routines for demodulating the PUSCH physical channel from 36.211 V8.6 2009-03
* \author R. Knopp
* \date 2011
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr, florian.kaltenberger@eurecom.fr, ankit.bhamri@eurecom.fr
* \note
* \warning
*/

#include "PHY/defs.h"
#include "PHY/extern.h"
#include "defs.h"
#include "extern.h"
//#define DEBUG_ULSCH
38
#include "PHY/sse_intrin.h"
39

40
41
#include "T.h"

42
43
44
45
46
47
48
49
50
//extern char* namepointer_chMag ;
//eren
//extern int **ulchmag_eren;
//eren

static short jitter[8]  __attribute__ ((aligned(16))) = {1,0,0,1,0,1,1,0};
static short jitterc[8] __attribute__ ((aligned(16))) = {0,1,1,0,1,0,0,1};

#ifndef OFDMA_ULSCH
51
52
void lte_idft(LTE_DL_FRAME_PARMS *frame_parms,uint32_t *z, uint16_t Msc_PUSCH)
{
53
#if defined(__x86_64__) || defined(__i386__)
54
  __m128i idft_in128[3][1200],idft_out128[3][1200];
55
56
57
58
59
  __m128i norm128;
#elif defined(__arm__)
  int16x8_t idft_in128[3][1200],idft_out128[3][1200];
  int16x8_t norm128;
#endif
60
61
62
63
64
65
66
  int16_t *idft_in0=(int16_t*)idft_in128[0],*idft_out0=(int16_t*)idft_out128[0];
  int16_t *idft_in1=(int16_t*)idft_in128[1],*idft_out1=(int16_t*)idft_out128[1];
  int16_t *idft_in2=(int16_t*)idft_in128[2],*idft_out2=(int16_t*)idft_out128[2];

  uint32_t *z0,*z1,*z2,*z3,*z4,*z5,*z6,*z7,*z8,*z9,*z10=NULL,*z11=NULL;
  int i,ip;

67

68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87

  //  printf("Doing lte_idft for Msc_PUSCH %d\n",Msc_PUSCH);

  if (frame_parms->Ncp == 0) { // Normal prefix
    z0 = z;
    z1 = z0+(frame_parms->N_RB_DL*12);
    z2 = z1+(frame_parms->N_RB_DL*12);
    //pilot
    z3 = z2+(2*frame_parms->N_RB_DL*12);
    z4 = z3+(frame_parms->N_RB_DL*12);
    z5 = z4+(frame_parms->N_RB_DL*12);

    z6 = z5+(frame_parms->N_RB_DL*12);
    z7 = z6+(frame_parms->N_RB_DL*12);
    z8 = z7+(frame_parms->N_RB_DL*12);
    //pilot
    z9 = z8+(2*frame_parms->N_RB_DL*12);
    z10 = z9+(frame_parms->N_RB_DL*12);
    // srs
    z11 = z10+(frame_parms->N_RB_DL*12);
88
  } else { // extended prefix
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    z0 = z;
    z1 = z0+(frame_parms->N_RB_DL*12);
    //pilot
    z2 = z1+(2*frame_parms->N_RB_DL*12);
    z3 = z2+(frame_parms->N_RB_DL*12);
    z4 = z3+(frame_parms->N_RB_DL*12);

    z5 = z4+(frame_parms->N_RB_DL*12);
    z6 = z5+(frame_parms->N_RB_DL*12);
    //pilot
    z7 = z6+(2*frame_parms->N_RB_DL*12);
    z8 = z7+(frame_parms->N_RB_DL*12);
    // srs
    z9 = z8+(frame_parms->N_RB_DL*12);
  }
104

105
  // conjugate input
106
  for (i=0; i<(Msc_PUSCH>>2); i++) {
107
#if defined(__x86_64__)||defined(__i386__)
108
109
110
111
112
113
114
115
116
117
    *&(((__m128i*)z0)[i])=_mm_sign_epi16(*&(((__m128i*)z0)[i]),*(__m128i*)&conjugate2[0]);
    *&(((__m128i*)z1)[i])=_mm_sign_epi16(*&(((__m128i*)z1)[i]),*(__m128i*)&conjugate2[0]);
    *&(((__m128i*)z2)[i])=_mm_sign_epi16(*&(((__m128i*)z2)[i]),*(__m128i*)&conjugate2[0]);
    *&(((__m128i*)z3)[i])=_mm_sign_epi16(*&(((__m128i*)z3)[i]),*(__m128i*)&conjugate2[0]);
    *&(((__m128i*)z4)[i])=_mm_sign_epi16(*&(((__m128i*)z4)[i]),*(__m128i*)&conjugate2[0]);
    *&(((__m128i*)z5)[i])=_mm_sign_epi16(*&(((__m128i*)z5)[i]),*(__m128i*)&conjugate2[0]);
    *&(((__m128i*)z6)[i])=_mm_sign_epi16(*&(((__m128i*)z6)[i]),*(__m128i*)&conjugate2[0]);
    *&(((__m128i*)z7)[i])=_mm_sign_epi16(*&(((__m128i*)z7)[i]),*(__m128i*)&conjugate2[0]);
    *&(((__m128i*)z8)[i])=_mm_sign_epi16(*&(((__m128i*)z8)[i]),*(__m128i*)&conjugate2[0]);
    *&(((__m128i*)z9)[i])=_mm_sign_epi16(*&(((__m128i*)z9)[i]),*(__m128i*)&conjugate2[0]);
118

119
    if (frame_parms->Ncp==NORMAL) {
120
121
122
      *&(((__m128i*)z10)[i])=_mm_sign_epi16(*&(((__m128i*)z10)[i]),*(__m128i*)&conjugate2[0]);
      *&(((__m128i*)z11)[i])=_mm_sign_epi16(*&(((__m128i*)z11)[i]),*(__m128i*)&conjugate2[0]);
    }
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
#elif defined(__arm__)
    *&(((int16x8_t*)z0)[i])=vmulq_s16(*&(((int16x8_t*)z0)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z1)[i])=vmulq_s16(*&(((int16x8_t*)z1)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z2)[i])=vmulq_s16(*&(((int16x8_t*)z2)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z3)[i])=vmulq_s16(*&(((int16x8_t*)z3)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z4)[i])=vmulq_s16(*&(((int16x8_t*)z4)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z5)[i])=vmulq_s16(*&(((int16x8_t*)z5)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z6)[i])=vmulq_s16(*&(((int16x8_t*)z6)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z7)[i])=vmulq_s16(*&(((int16x8_t*)z7)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z8)[i])=vmulq_s16(*&(((int16x8_t*)z8)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z9)[i])=vmulq_s16(*&(((int16x8_t*)z9)[i]),*(int16x8_t*)&conjugate2[0]);


    if (frame_parms->Ncp==NORMAL) {
      *&(((int16x8_t*)z10)[i])=vmulq_s16(*&(((int16x8_t*)z10)[i]),*(int16x8_t*)&conjugate2[0]);
      *&(((int16x8_t*)z11)[i])=vmulq_s16(*&(((int16x8_t*)z11)[i]),*(int16x8_t*)&conjugate2[0]);
    }

#endif
142
143
144
  }

  for (i=0,ip=0; i<Msc_PUSCH; i++,ip+=4) {
145
146
147
148
149
150
151
152
153
154
    ((uint32_t*)idft_in0)[ip+0] =  z0[i];
    ((uint32_t*)idft_in0)[ip+1] =  z1[i];
    ((uint32_t*)idft_in0)[ip+2] =  z2[i];
    ((uint32_t*)idft_in0)[ip+3] =  z3[i];
    ((uint32_t*)idft_in1)[ip+0] =  z4[i];
    ((uint32_t*)idft_in1)[ip+1] =  z5[i];
    ((uint32_t*)idft_in1)[ip+2] =  z6[i];
    ((uint32_t*)idft_in1)[ip+3] =  z7[i];
    ((uint32_t*)idft_in2)[ip+0] =  z8[i];
    ((uint32_t*)idft_in2)[ip+1] =  z9[i];
155

156
157
158
159
160
    if (frame_parms->Ncp==0) {
      ((uint32_t*)idft_in2)[ip+2] =  z10[i];
      ((uint32_t*)idft_in2)[ip+3] =  z11[i];
    }
  }
161
162


163
164
165
166
167
168
  switch (Msc_PUSCH) {
  case 12:
    dft12((int16_t *)idft_in0,(int16_t *)idft_out0);
    dft12((int16_t *)idft_in1,(int16_t *)idft_out1);
    dft12((int16_t *)idft_in2,(int16_t *)idft_out2);

169
#if defined(__x86_64__)||defined(__i386__)
170
    norm128 = _mm_set1_epi16(9459);
171
172
173
#elif defined(__arm__)
    norm128 = vdupq_n_s16(9459);
#endif
174
    for (i=0; i<12; i++) {
175
#if defined(__x86_64__)||defined(__i386__)
176
177
178
      ((__m128i*)idft_out0)[i] = _mm_slli_epi16(_mm_mulhi_epi16(((__m128i*)idft_out0)[i],norm128),1);
      ((__m128i*)idft_out1)[i] = _mm_slli_epi16(_mm_mulhi_epi16(((__m128i*)idft_out1)[i],norm128),1);
      ((__m128i*)idft_out2)[i] = _mm_slli_epi16(_mm_mulhi_epi16(((__m128i*)idft_out2)[i],norm128),1);
179
180
181
182
183
#elif defined(__arm__)
      ((int16x8_t*)idft_out0)[i] = vqdmulhq_s16(((int16x8_t*)idft_out0)[i],norm128);
      ((int16x8_t*)idft_out1)[i] = vqdmulhq_s16(((int16x8_t*)idft_out1)[i],norm128);
      ((int16x8_t*)idft_out2)[i] = vqdmulhq_s16(((int16x8_t*)idft_out2)[i],norm128);
#endif
184
185
186
    }

    break;
187

188
189
190
191
192
  case 24:
    dft24(idft_in0,idft_out0,1);
    dft24(idft_in1,idft_out1,1);
    dft24(idft_in2,idft_out2,1);
    break;
193

194
195
196
197
198
  case 36:
    dft36(idft_in0,idft_out0,1);
    dft36(idft_in1,idft_out1,1);
    dft36(idft_in2,idft_out2,1);
    break;
199

200
201
202
203
204
  case 48:
    dft48(idft_in0,idft_out0,1);
    dft48(idft_in1,idft_out1,1);
    dft48(idft_in2,idft_out2,1);
    break;
205

206
207
208
209
210
  case 60:
    dft60(idft_in0,idft_out0,1);
    dft60(idft_in1,idft_out1,1);
    dft60(idft_in2,idft_out2,1);
    break;
211

212
213
214
215
216
  case 72:
    dft72(idft_in0,idft_out0,1);
    dft72(idft_in1,idft_out1,1);
    dft72(idft_in2,idft_out2,1);
    break;
217

218
219
220
221
222
  case 96:
    dft96(idft_in0,idft_out0,1);
    dft96(idft_in1,idft_out1,1);
    dft96(idft_in2,idft_out2,1);
    break;
223

224
225
226
227
228
  case 108:
    dft108(idft_in0,idft_out0,1);
    dft108(idft_in1,idft_out1,1);
    dft108(idft_in2,idft_out2,1);
    break;
229

230
231
232
233
234
  case 120:
    dft120(idft_in0,idft_out0,1);
    dft120(idft_in1,idft_out1,1);
    dft120(idft_in2,idft_out2,1);
    break;
235

236
237
238
239
240
  case 144:
    dft144(idft_in0,idft_out0,1);
    dft144(idft_in1,idft_out1,1);
    dft144(idft_in2,idft_out2,1);
    break;
241

242
243
244
245
246
  case 180:
    dft180(idft_in0,idft_out0,1);
    dft180(idft_in1,idft_out1,1);
    dft180(idft_in2,idft_out2,1);
    break;
247

248
249
250
251
252
  case 192:
    dft192(idft_in0,idft_out0,1);
    dft192(idft_in1,idft_out1,1);
    dft192(idft_in2,idft_out2,1);
    break;
253

254
255
256
257
258
  case 216:
    dft216(idft_in0,idft_out0,1);
    dft216(idft_in1,idft_out1,1);
    dft216(idft_in2,idft_out2,1);
    break;
259

260
261
262
263
264
  case 240:
    dft240(idft_in0,idft_out0,1);
    dft240(idft_in1,idft_out1,1);
    dft240(idft_in2,idft_out2,1);
    break;
265

266
267
  case 288:
    dft288(idft_in0,idft_out0,1);
268
    dft288(idft_in1,idft_out1,1);
269
270
    dft288(idft_in2,idft_out2,1);
    break;
271
272

  case 300:
273
274
275
276
    dft300(idft_in0,idft_out0,1);
    dft300(idft_in1,idft_out1,1);
    dft300(idft_in2,idft_out2,1);
    break;
277

278
279
280
281
282
  case 324:
    dft324((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft324((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft324((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
283

284
285
286
287
288
  case 360:
    dft360((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft360((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft360((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
289

290
291
292
293
294
  case 384:
    dft384((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft384((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft384((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
295

296
297
298
299
300
  case 432:
    dft432((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft432((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft432((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
301

302
303
304
305
306
  case 480:
    dft480((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft480((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft480((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
307

308
309
310
311
312
  case 540:
    dft540((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft540((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft540((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
313

314
315
316
317
318
  case 576:
    dft576((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft576((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft576((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
319

320
321
322
323
324
  case 600:
    dft600((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft600((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft600((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
325

326
327
328
329
330
  case 648:
    dft648((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft648((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft648((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
331

332
333
334
335
336
  case 720:
    dft720((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft720((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft720((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
337

338
339
340
341
342
  case 864:
    dft864((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft864((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft864((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
343

344
345
346
347
348
  case 900:
    dft900((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft900((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft900((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
349

350
351
352
353
354
  case 960:
    dft960((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft960((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft960((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
355

356
357
358
359
360
  case 972:
    dft972((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft972((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft972((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
361

362
363
364
365
366
  case 1080:
    dft1080((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft1080((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft1080((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
367

368
369
370
371
372
  case 1152:
    dft1152((int16_t*)idft_in0,(int16_t*)idft_out0,1);
    dft1152((int16_t*)idft_in1,(int16_t*)idft_out1,1);
    dft1152((int16_t*)idft_in2,(int16_t*)idft_out2,1);
    break;
373

374
375
376
377
378
  case 1200:
    dft1200(idft_in0,idft_out0,1);
    dft1200(idft_in1,idft_out1,1);
    dft1200(idft_in2,idft_out2,1);
    break;
379

380
381
382
383
  default:
    // should not be reached
    LOG_E( PHY, "Unsupported Msc_PUSCH value of %"PRIu16"\n", Msc_PUSCH );
    return;
384
385
386
  }


387
388

  for (i=0,ip=0; i<Msc_PUSCH; i++,ip+=4) {
389
390
391
392
393
394
395
396
    z0[i]     = ((uint32_t*)idft_out0)[ip];
    /*
      printf("out0 (%d,%d),(%d,%d),(%d,%d),(%d,%d)\n",
      ((int16_t*)&idft_out0[ip])[0],((int16_t*)&idft_out0[ip])[1],
      ((int16_t*)&idft_out0[ip+1])[0],((int16_t*)&idft_out0[ip+1])[1],
      ((int16_t*)&idft_out0[ip+2])[0],((int16_t*)&idft_out0[ip+2])[1],
      ((int16_t*)&idft_out0[ip+3])[0],((int16_t*)&idft_out0[ip+3])[1]);
    */
397
398
399
400
401
402
403
404
405
406
    z1[i]     = ((uint32_t*)idft_out0)[ip+1];
    z2[i]     = ((uint32_t*)idft_out0)[ip+2];
    z3[i]     = ((uint32_t*)idft_out0)[ip+3];
    z4[i]     = ((uint32_t*)idft_out1)[ip+0];
    z5[i]     = ((uint32_t*)idft_out1)[ip+1];
    z6[i]     = ((uint32_t*)idft_out1)[ip+2];
    z7[i]     = ((uint32_t*)idft_out1)[ip+3];
    z8[i]     = ((uint32_t*)idft_out2)[ip];
    z9[i]     = ((uint32_t*)idft_out2)[ip+1];

407
    if (frame_parms->Ncp==0) {
408
      z10[i]    = ((uint32_t*)idft_out2)[ip+2];
409
410
411
      z11[i]    = ((uint32_t*)idft_out2)[ip+3];
    }
  }
412

413
  // conjugate output
414
  for (i=0; i<(Msc_PUSCH>>2); i++) {
415
#if defined(__x86_64__) || defined(__i386__)
416
417
418
419
420
421
422
423
424
425
    ((__m128i*)z0)[i]=_mm_sign_epi16(((__m128i*)z0)[i],*(__m128i*)&conjugate2[0]);
    ((__m128i*)z1)[i]=_mm_sign_epi16(((__m128i*)z1)[i],*(__m128i*)&conjugate2[0]);
    ((__m128i*)z2)[i]=_mm_sign_epi16(((__m128i*)z2)[i],*(__m128i*)&conjugate2[0]);
    ((__m128i*)z3)[i]=_mm_sign_epi16(((__m128i*)z3)[i],*(__m128i*)&conjugate2[0]);
    ((__m128i*)z4)[i]=_mm_sign_epi16(((__m128i*)z4)[i],*(__m128i*)&conjugate2[0]);
    ((__m128i*)z5)[i]=_mm_sign_epi16(((__m128i*)z5)[i],*(__m128i*)&conjugate2[0]);
    ((__m128i*)z6)[i]=_mm_sign_epi16(((__m128i*)z6)[i],*(__m128i*)&conjugate2[0]);
    ((__m128i*)z7)[i]=_mm_sign_epi16(((__m128i*)z7)[i],*(__m128i*)&conjugate2[0]);
    ((__m128i*)z8)[i]=_mm_sign_epi16(((__m128i*)z8)[i],*(__m128i*)&conjugate2[0]);
    ((__m128i*)z9)[i]=_mm_sign_epi16(((__m128i*)z9)[i],*(__m128i*)&conjugate2[0]);
426

427
    if (frame_parms->Ncp==NORMAL) {
428
429
430
      ((__m128i*)z10)[i]=_mm_sign_epi16(((__m128i*)z10)[i],*(__m128i*)&conjugate2[0]);
      ((__m128i*)z11)[i]=_mm_sign_epi16(((__m128i*)z11)[i],*(__m128i*)&conjugate2[0]);
    }
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
#elif defined(__arm__)
    *&(((int16x8_t*)z0)[i])=vmulq_s16(*&(((int16x8_t*)z0)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z1)[i])=vmulq_s16(*&(((int16x8_t*)z1)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z2)[i])=vmulq_s16(*&(((int16x8_t*)z2)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z3)[i])=vmulq_s16(*&(((int16x8_t*)z3)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z4)[i])=vmulq_s16(*&(((int16x8_t*)z4)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z5)[i])=vmulq_s16(*&(((int16x8_t*)z5)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z6)[i])=vmulq_s16(*&(((int16x8_t*)z6)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z7)[i])=vmulq_s16(*&(((int16x8_t*)z7)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z8)[i])=vmulq_s16(*&(((int16x8_t*)z8)[i]),*(int16x8_t*)&conjugate2[0]);
    *&(((int16x8_t*)z9)[i])=vmulq_s16(*&(((int16x8_t*)z9)[i]),*(int16x8_t*)&conjugate2[0]);


    if (frame_parms->Ncp==NORMAL) {
      *&(((int16x8_t*)z10)[i])=vmulq_s16(*&(((int16x8_t*)z10)[i]),*(int16x8_t*)&conjugate2[0]);
      *&(((int16x8_t*)z11)[i])=vmulq_s16(*&(((int16x8_t*)z11)[i]),*(int16x8_t*)&conjugate2[0]);
    }

#endif
450
451
  }

452
453
454
455
456
#if defined(__x86_64__) || defined(__i386__)
  _mm_empty();
  _m_empty();
#endif

457
458
459
460
461
462
463
464
}
#endif





int32_t ulsch_qpsk_llr(LTE_DL_FRAME_PARMS *frame_parms,
465
466
467
468
469
470
                       int32_t **rxdataF_comp,
                       int16_t *ulsch_llr,
                       uint8_t symbol,
                       uint16_t nb_rb,
                       int16_t **llrp)
{
471
#if defined(__x86_64__) || defined(__i386__)
472
473
  __m128i *rxF=(__m128i*)&rxdataF_comp[0][(symbol*frame_parms->N_RB_DL*12)];
  __m128i **llrp128 = (__m128i **)llrp;
474
475
476
477
478
479
#elif defined(__arm__)
  int16x8_t *rxF= (int16x8_t*)&rxdataF_comp[0][(symbol*frame_parms->N_RB_DL*12)];
  int16x8_t **llrp128 = (int16x8_t **)llrp;
#endif

  int i;
480
481
482

  //  printf("qpsk llr for symbol %d (pos %d), llr offset %d\n",symbol,(symbol*frame_parms->N_RB_DL*12),llr128U-(__m128i*)ulsch_llr);

483
  for (i=0; i<(nb_rb*3); i++) {
484
485
486
487
488
489
    //printf("%d,%d,%d,%d,%d,%d,%d,%d\n",((int16_t *)rxF)[0],((int16_t *)rxF)[1],((int16_t *)rxF)[2],((int16_t *)rxF)[3],((int16_t *)rxF)[4],((int16_t *)rxF)[5],((int16_t *)rxF)[6],((int16_t *)rxF)[7]);
    *(*llrp128) = *rxF;
    rxF++;
    (*llrp128)++;
  }

490
#if defined(__x86_64__) || defined(__i386__)
491
492
  _mm_empty();
  _m_empty();
493
#endif
494
495
496
497
498
499

  return(0);

}

void ulsch_16qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
500
501
502
503
504
505
506
                     int32_t **rxdataF_comp,
                     int16_t *ulsch_llr,
                     int32_t **ul_ch_mag,
                     uint8_t symbol,
                     uint16_t nb_rb,
                     int16_t **llrp)
{
507
int i;
508

509
#if defined(__x86_64__) || defined(__i386__)
510
511
512
513
514
  __m128i *rxF=(__m128i*)&rxdataF_comp[0][(symbol*frame_parms->N_RB_DL*12)];
  __m128i *ch_mag;
  __m128i mmtmpU0;
  __m128i **llrp128=(__m128i **)llrp;
  ch_mag =(__m128i*)&ul_ch_mag[0][(symbol*frame_parms->N_RB_DL*12)];
515
516
517
518
519
520
521
#elif defined(__arm__)
  int16x8_t *rxF=(int16x8_t*)&rxdataF_comp[0][(symbol*frame_parms->N_RB_DL*12)];
  int16x8_t *ch_mag;
  int16x8_t xmm0;
  int16_t **llrp16=llrp;
  ch_mag =(int16x8_t*)&ul_ch_mag[0][(symbol*frame_parms->N_RB_DL*12)];
#endif
522

523
  for (i=0; i<(nb_rb*3); i++) {
524

525
#if defined(__x86_64__) || defined(__i386__)
526
527
528
529
530
531
532
533
    mmtmpU0 = _mm_abs_epi16(rxF[i]);
    //    print_shorts("tmp0",&tmp0);

    mmtmpU0 = _mm_subs_epi16(ch_mag[i],mmtmpU0);

    (*llrp128)[0] = _mm_unpacklo_epi32(rxF[i],mmtmpU0);
    (*llrp128)[1] = _mm_unpackhi_epi32(rxF[i],mmtmpU0);
    (*llrp128)+=2;
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
#elif defined(__arm__)
    xmm0 = vabsq_s16(rxF[i]);
    xmm0 = vqsubq_s16(ch_mag[i],xmm0);
    (*llrp16)[0] = vgetq_lane_s16(rxF[i],0);
    (*llrp16)[1] = vgetq_lane_s16(xmm0,0);
    (*llrp16)[2] = vgetq_lane_s16(rxF[i],1);
    (*llrp16)[3] = vgetq_lane_s16(xmm0,1);
    (*llrp16)[4] = vgetq_lane_s16(rxF[i],2);
    (*llrp16)[5] = vgetq_lane_s16(xmm0,2);
    (*llrp16)[6] = vgetq_lane_s16(rxF[i],2);
    (*llrp16)[7] = vgetq_lane_s16(xmm0,3);
    (*llrp16)[8] = vgetq_lane_s16(rxF[i],4);
    (*llrp16)[9] = vgetq_lane_s16(xmm0,4);
    (*llrp16)[10] = vgetq_lane_s16(rxF[i],5);
    (*llrp16)[11] = vgetq_lane_s16(xmm0,5);
    (*llrp16)[12] = vgetq_lane_s16(rxF[i],6);
    (*llrp16)[13] = vgetq_lane_s16(xmm0,6);
    (*llrp16)[14] = vgetq_lane_s16(rxF[i],7);
    (*llrp16)[15] = vgetq_lane_s16(xmm0,7);
    (*llrp16)+=16;
#endif

556
557
558
559
560

    //    print_bytes("rxF[i]",&rxF[i]);
    //    print_bytes("rxF[i+1]",&rxF[i+1]);
  }

561
#if defined(__x86_64__) || defined(__i386__)
562
563
  _mm_empty();
  _m_empty();
564
#endif
565
566
567
568

}

void ulsch_64qam_llr(LTE_DL_FRAME_PARMS *frame_parms,
569
570
571
572
573
574
575
576
                     int32_t **rxdataF_comp,
                     int16_t *ulsch_llr,
                     int32_t **ul_ch_mag,
                     int32_t **ul_ch_magb,
                     uint8_t symbol,
                     uint16_t nb_rb,
                     int16_t **llrp)
{
577
578
  int i;
  int32_t **llrp32=(int32_t **)llrp;
579

580
#if defined(__x86_64__) || defined(__i386)
581
582
583
584
585
586
  __m128i *rxF=(__m128i*)&rxdataF_comp[0][(symbol*frame_parms->N_RB_DL*12)];
  __m128i *ch_mag,*ch_magb;
  __m128i mmtmpU1,mmtmpU2;

  ch_mag =(__m128i*)&ul_ch_mag[0][(symbol*frame_parms->N_RB_DL*12)];
  ch_magb =(__m128i*)&ul_ch_magb[0][(symbol*frame_parms->N_RB_DL*12)];
587
588
589
590
#elif defined(__arm__)
  int16x8_t *rxF=(int16x8_t*)&rxdataF_comp[0][(symbol*frame_parms->N_RB_DL*12)];
  int16x8_t *ch_mag,*ch_magb;
  int16x8_t mmtmpU1,mmtmpU2;
591

592
593
594
  ch_mag =(int16x8_t*)&ul_ch_mag[0][(symbol*frame_parms->N_RB_DL*12)];
  ch_magb =(int16x8_t*)&ul_ch_magb[0][(symbol*frame_parms->N_RB_DL*12)];
#endif
595
  //  printf("symbol %d: mag %d, magb %d\n",symbol,_mm_extract_epi16(ch_mag[0],0),_mm_extract_epi16(ch_magb[0],0));
596
  for (i=0; i<(nb_rb*3); i++) {
597
598


599
#if defined(__x86_64__) || defined(__i386__)
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
    mmtmpU1 = _mm_abs_epi16(rxF[i]);

    mmtmpU1  = _mm_subs_epi16(ch_mag[i],mmtmpU1);

    mmtmpU2 = _mm_abs_epi16(mmtmpU1);
    mmtmpU2 = _mm_subs_epi16(ch_magb[i],mmtmpU2);

    (*llrp32)[0]  = _mm_extract_epi32(rxF[i],0);
    (*llrp32)[1]  = _mm_extract_epi32(mmtmpU1,0);
    (*llrp32)[2]  = _mm_extract_epi32(mmtmpU2,0);
    (*llrp32)[3]  = _mm_extract_epi32(rxF[i],1);
    (*llrp32)[4]  = _mm_extract_epi32(mmtmpU1,1);
    (*llrp32)[5]  = _mm_extract_epi32(mmtmpU2,1);
    (*llrp32)[6]  = _mm_extract_epi32(rxF[i],2);
    (*llrp32)[7]  = _mm_extract_epi32(mmtmpU1,2);
    (*llrp32)[8]  = _mm_extract_epi32(mmtmpU2,2);
    (*llrp32)[9]  = _mm_extract_epi32(rxF[i],3);
    (*llrp32)[10] = _mm_extract_epi32(mmtmpU1,3);
    (*llrp32)[11] = _mm_extract_epi32(mmtmpU2,3);
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
#elif defined(__arm__)
    mmtmpU1 = vabsq_s16(rxF[i]);

    mmtmpU1 = vqsubq_s16(ch_mag[i],mmtmpU1);

    mmtmpU2 = vabsq_s16(mmtmpU1);
    mmtmpU2 = vqsubq_s16(ch_magb[i],mmtmpU2);

    (*llrp32)[0]  = vgetq_lane_s32((int32x4_t)rxF[i],0);
    (*llrp32)[1]  = vgetq_lane_s32((int32x4_t)mmtmpU1,0);
    (*llrp32)[2]  = vgetq_lane_s32((int32x4_t)mmtmpU2,0);
    (*llrp32)[3]  = vgetq_lane_s32((int32x4_t)rxF[i],1);
    (*llrp32)[4]  = vgetq_lane_s32((int32x4_t)mmtmpU1,1);
    (*llrp32)[5]  = vgetq_lane_s32((int32x4_t)mmtmpU2,1);
    (*llrp32)[6]  = vgetq_lane_s32((int32x4_t)rxF[i],2);
    (*llrp32)[7]  = vgetq_lane_s32((int32x4_t)mmtmpU1,2);
    (*llrp32)[8]  = vgetq_lane_s32((int32x4_t)mmtmpU2,2);
    (*llrp32)[9]  = vgetq_lane_s32((int32x4_t)rxF[i],3);
    (*llrp32)[10] = vgetq_lane_s32((int32x4_t)mmtmpU1,3);
    (*llrp32)[11] = vgetq_lane_s32((int32x4_t)mmtmpU2,3);

#endif
641
642
    (*llrp32)+=12;
  }
643
#if defined(__x86_64__) || defined(__i386__)
644
645
  _mm_empty();
  _m_empty();
646
#endif
647
648
649
}

void ulsch_detection_mrc(LTE_DL_FRAME_PARMS *frame_parms,
650
651
652
653
654
655
                         int32_t **rxdataF_comp,
                         int32_t **ul_ch_mag,
                         int32_t **ul_ch_magb,
                         uint8_t symbol,
                         uint16_t nb_rb)
{
656
657


658
#if defined(__x86_64__) || defined(__i386__)
659
660
661

  __m128i *rxdataF_comp128_0,*ul_ch_mag128_0,*ul_ch_mag128_0b;
  __m128i *rxdataF_comp128_1,*ul_ch_mag128_1,*ul_ch_mag128_1b;
662
#elif defined(__arm__)
663

664
665
666
667
  int16x8_t *rxdataF_comp128_0,*ul_ch_mag128_0,*ul_ch_mag128_0b;
  int16x8_t *rxdataF_comp128_1,*ul_ch_mag128_1,*ul_ch_mag128_1b;

#endif
668
669
670
  int32_t i;

  if (frame_parms->nb_antennas_rx>1) {
671
#if defined(__x86_64__) || defined(__i386__)
672
673
674
675
676
677
    rxdataF_comp128_0   = (__m128i *)&rxdataF_comp[0][symbol*frame_parms->N_RB_DL*12];
    rxdataF_comp128_1   = (__m128i *)&rxdataF_comp[1][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_0      = (__m128i *)&ul_ch_mag[0][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_1      = (__m128i *)&ul_ch_mag[1][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_0b     = (__m128i *)&ul_ch_magb[0][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_1b     = (__m128i *)&ul_ch_magb[1][symbol*frame_parms->N_RB_DL*12];
678
679

    // MRC on each re of rb, both on MF output and magnitude (for 16QAM/64QAM llr computation)
680
    for (i=0; i<nb_rb*3; i++) {
681
682
683
684
      rxdataF_comp128_0[i] = _mm_adds_epi16(_mm_srai_epi16(rxdataF_comp128_0[i],1),_mm_srai_epi16(rxdataF_comp128_1[i],1));
      ul_ch_mag128_0[i]    = _mm_adds_epi16(_mm_srai_epi16(ul_ch_mag128_0[i],1),_mm_srai_epi16(ul_ch_mag128_1[i],1));
      ul_ch_mag128_0b[i]   = _mm_adds_epi16(_mm_srai_epi16(ul_ch_mag128_0b[i],1),_mm_srai_epi16(ul_ch_mag128_1b[i],1));
      rxdataF_comp128_0[i] = _mm_add_epi16(rxdataF_comp128_0[i],(*(__m128i*)&jitterc[0]));
685

686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
#elif defined(__arm__)
    rxdataF_comp128_0   = (int16x8_t *)&rxdataF_comp[0][symbol*frame_parms->N_RB_DL*12];
    rxdataF_comp128_1   = (int16x8_t *)&rxdataF_comp[1][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_0      = (int16x8_t *)&ul_ch_mag[0][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_1      = (int16x8_t *)&ul_ch_mag[1][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_0b     = (int16x8_t *)&ul_ch_magb[0][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_1b     = (int16x8_t *)&ul_ch_magb[1][symbol*frame_parms->N_RB_DL*12];

    // MRC on each re of rb, both on MF output and magnitude (for 16QAM/64QAM llr computation)
    for (i=0; i<nb_rb*3; i++) {
      rxdataF_comp128_0[i] = vhaddq_s16(rxdataF_comp128_0[i],rxdataF_comp128_1[i]);
      ul_ch_mag128_0[i]    = vhaddq_s16(ul_ch_mag128_0[i],ul_ch_mag128_1[i]);
      ul_ch_mag128_0b[i]   = vhaddq_s16(ul_ch_mag128_0b[i],ul_ch_mag128_1b[i]);
      rxdataF_comp128_0[i] = vqaddq_s16(rxdataF_comp128_0[i],(*(int16x8_t*)&jitterc[0]));


#endif
    }
704
705
  }

706
#if defined(__x86_64__) || defined(__i386__)
707
708
  _mm_empty();
  _m_empty();
709
#endif
710
711
712
}

void ulsch_extract_rbs_single(int32_t **rxdataF,
713
714
715
716
717
718
719
                              int32_t **rxdataF_ext,
                              uint32_t first_rb,
                              uint32_t nb_rb,
                              uint8_t l,
                              uint8_t Ns,
                              LTE_DL_FRAME_PARMS *frame_parms)
{
720
721
722
723
724


  uint16_t nb_rb1,nb_rb2;
  uint8_t aarx;
  int32_t *rxF,*rxF_ext;
725

726
727
728
  //uint8_t symbol = l+Ns*frame_parms->symbols_per_tti/2;
  uint8_t symbol = l+((7-frame_parms->Ncp)*(Ns&1)); ///symbol within sub-frame

729
  for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
730
731
732
733


    nb_rb1 = cmin(cmax((int)(frame_parms->N_RB_UL) - (int)(2*first_rb),(int)0),(int)(2*nb_rb));    // 2 times no. RBs before the DC
    nb_rb2 = 2*nb_rb - nb_rb1;                                   // 2 times no. RBs after the DC
knopp's avatar
knopp committed
734
 
735
#ifdef DEBUG_ULSCH
knopp's avatar
knopp committed
736
    printf("ulsch_extract_rbs_single: 2*nb_rb1 = %d, 2*nb_rb2 = %d\n",nb_rb1,nb_rb2);
737
738
739
#endif

    rxF_ext   = &rxdataF_ext[aarx][(symbol*frame_parms->N_RB_UL*12)];
740

741
742
743
744
    if (nb_rb1) {
      rxF = &rxdataF[aarx][(first_rb*12 + frame_parms->first_carrier_offset + symbol*frame_parms->ofdm_symbol_size)];
      memcpy(rxF_ext, rxF, nb_rb1*6*sizeof(int));
      rxF_ext += nb_rb1*6;
knopp's avatar
   
knopp committed
745

746
      if (nb_rb2)  {
747
748
749
750
751
752
753
754
755
        //#ifdef OFDMA_ULSCH
        //  rxF = &rxdataF[aarx][(1 + symbol*frame_parms->ofdm_symbol_size)*2];
        //#else
        rxF = &rxdataF[aarx][(symbol*frame_parms->ofdm_symbol_size)];
        //#endif
        memcpy(rxF_ext, rxF, nb_rb2*6*sizeof(int));
        rxF_ext += nb_rb2*6;
      }
    } else { //there is only data in the second half
756
757
758
759
760
761
762
763
764
765
766
767
768
      //#ifdef OFDMA_ULSCH
      //      rxF = &rxdataF[aarx][(1 + 6*(2*first_rb - frame_parms->N_RB_UL) + symbol*frame_parms->ofdm_symbol_size)*2];
      //#else
      rxF = &rxdataF[aarx][(6*(2*first_rb - frame_parms->N_RB_UL) + symbol*frame_parms->ofdm_symbol_size)];
      //#endif
      memcpy(rxF_ext, rxF, nb_rb2*6*sizeof(int));
      rxF_ext += nb_rb2*6;
    }
  }

}

void ulsch_correct_ext(int32_t **rxdataF_ext,
769
770
771
772
773
                       int32_t **rxdataF_ext2,
                       uint16_t symbol,
                       LTE_DL_FRAME_PARMS *frame_parms,
                       uint16_t nb_rb)
{
774
775
776
777

  int32_t i,j,aarx;
  int32_t *rxF_ext2,*rxF_ext;

778
  for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {
779
780
781
    rxF_ext2 = &rxdataF_ext2[aarx][symbol*12*frame_parms->N_RB_UL];
    rxF_ext  = &rxdataF_ext[aarx][2*symbol*12*frame_parms->N_RB_UL];

782
783
    for (i=0,j=0; i<12*nb_rb; i++,j+=2) {
      rxF_ext2[i] = rxF_ext[j];
784
785
786
787
788
789
790
    }
  }
}



void ulsch_channel_compensation(int32_t **rxdataF_ext,
791
792
793
794
795
796
797
798
799
800
801
                                int32_t **ul_ch_estimates_ext,
                                int32_t **ul_ch_mag,
                                int32_t **ul_ch_magb,
                                int32_t **rxdataF_comp,
                                LTE_DL_FRAME_PARMS *frame_parms,
                                uint8_t symbol,
                                uint8_t Qm,
                                uint16_t nb_rb,
                                uint8_t output_shift)
{

802
  uint16_t rb;
803
804
805

#if defined(__x86_64__) || defined(__i386__)

806
807
808
809
810
811
812
  __m128i *ul_ch128,*ul_ch_mag128,*ul_ch_mag128b,*rxdataF128,*rxdataF_comp128;
  uint8_t aarx;//,symbol_mod;
  __m128i mmtmpU0,mmtmpU1,mmtmpU2,mmtmpU3;
#ifdef OFDMA_ULSCH
  __m128i QAM_amp128U,QAM_amp128bU;
#endif

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
#elif defined(__arm__)

  int16x4_t *ul_ch128,*rxdataF128;
  int16x8_t *ul_ch_mag128,*ul_ch_mag128b,*rxdataF_comp128;

  uint8_t aarx;//,symbol_mod;
  int32x4_t mmtmpU0,mmtmpU1,mmtmpU0b,mmtmpU1b;
#ifdef OFDMA_ULSCH
  int16x8_t mmtmpU2,mmtmpU3;
  int16x8_t QAM_amp128U,QAM_amp128bU;
#endif
  int16_t conj[4]__attribute__((aligned(16))) = {1,-1,1,-1};
  int32x4_t output_shift128 = vmovq_n_s32(-(int32_t)output_shift);


828

829
830
831
#endif

#ifdef OFDMA_ULSCH
832

833
#if defined(__x86_64__) || defined(__i386__)
834
835
836
837
838
839
  if (Qm == 4)
    QAM_amp128U = _mm_set1_epi16(QAM16_n1);
  else if (Qm == 6) {
    QAM_amp128U  = _mm_set1_epi16(QAM64_n1);
    QAM_amp128bU = _mm_set1_epi16(QAM64_n2);
  }
840
841
842
843
844
845
846
#elif defined(__arm__)
  if (Qm == 4)
    QAM_amp128U = vdupq_n_s16(QAM16_n1);
  else if (Qm == 6) {
    QAM_amp128U  = vdupq_n_s16(QAM64_n1);
    QAM_amp128bU = vdupq_n_s16(QAM64_n2);
  }
847

848
#endif
849
#endif
850
851
852

  for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {

853
854
#if defined(__x86_64__) || defined(__i386__)

855
856
857
858
859
860
    ul_ch128          = (__m128i *)&ul_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128      = (__m128i *)&ul_ch_mag[aarx][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128b     = (__m128i *)&ul_ch_magb[aarx][symbol*frame_parms->N_RB_DL*12];
    rxdataF128        = (__m128i *)&rxdataF_ext[aarx][symbol*frame_parms->N_RB_DL*12];
    rxdataF_comp128   = (__m128i *)&rxdataF_comp[aarx][symbol*frame_parms->N_RB_DL*12];

861
#elif defined(__arm__)
862

863
864
865
866
867
868
869
870

    ul_ch128          = (int16x4_t *)&ul_ch_estimates_ext[aarx][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128      = (int16x8_t *)&ul_ch_mag[aarx][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128b     = (int16x8_t *)&ul_ch_magb[aarx][symbol*frame_parms->N_RB_DL*12];
    rxdataF128        = (int16x4_t *)&rxdataF_ext[aarx][symbol*frame_parms->N_RB_DL*12];
    rxdataF_comp128   = (int16x8_t *)&rxdataF_comp[aarx][symbol*frame_parms->N_RB_DL*12];

#endif
871
    for (rb=0; rb<nb_rb; rb++) {
872
873
      //            printf("comp: symbol %d rb %d\n",symbol,rb);
#ifdef OFDMA_ULSCH
874
875
876
      if (Qm>2) {
        // get channel amplitude if not QPSK

877
#if defined(__x86_64__) || defined(__i386__)
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
        mmtmpU0 = _mm_madd_epi16(ul_ch128[0],ul_ch128[0]);

        mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);

        mmtmpU1 = _mm_madd_epi16(ul_ch128[1],ul_ch128[1]);
        mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
        mmtmpU0 = _mm_packs_epi32(mmtmpU0,mmtmpU1);

        ul_ch_mag128[0] = _mm_unpacklo_epi16(mmtmpU0,mmtmpU0);
        ul_ch_mag128b[0] = ul_ch_mag128[0];
        ul_ch_mag128[0] = _mm_mulhi_epi16(ul_ch_mag128[0],QAM_amp128U);
        ul_ch_mag128[0] = _mm_slli_epi16(ul_ch_mag128[0],2);  // 2 to compensate the scale channel estimate
        ul_ch_mag128[1] = _mm_unpackhi_epi16(mmtmpU0,mmtmpU0);
        ul_ch_mag128b[1] = ul_ch_mag128[1];
        ul_ch_mag128[1] = _mm_mulhi_epi16(ul_ch_mag128[1],QAM_amp128U);
        ul_ch_mag128[1] = _mm_slli_epi16(ul_ch_mag128[1],2);  // 2 to compensate the scale channel estimate

        mmtmpU0 = _mm_madd_epi16(ul_ch128[2],ul_ch128[2]);
        mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
        mmtmpU1 = _mm_packs_epi32(mmtmpU0,mmtmpU0);

        ul_ch_mag128[2] = _mm_unpacklo_epi16(mmtmpU1,mmtmpU1);
        ul_ch_mag128b[2] = ul_ch_mag128[2];

        ul_ch_mag128[2] = _mm_mulhi_epi16(ul_ch_mag128[2],QAM_amp128U);
        ul_ch_mag128[2] = _mm_slli_epi16(ul_ch_mag128[2],2); // 2 to compensate the scale channel estimate


        ul_ch_mag128b[0] = _mm_mulhi_epi16(ul_ch_mag128b[0],QAM_amp128bU);
        ul_ch_mag128b[0] = _mm_slli_epi16(ul_ch_mag128b[0],2); // 2 to compensate the scale channel estimate


        ul_ch_mag128b[1] = _mm_mulhi_epi16(ul_ch_mag128b[1],QAM_amp128bU);
        ul_ch_mag128b[1] = _mm_slli_epi16(ul_ch_mag128b[1],2); // 2 to compensate the scale channel estimate

        ul_ch_mag128b[2] = _mm_mulhi_epi16(ul_ch_mag128b[2],QAM_amp128bU);
        ul_ch_mag128b[2] = _mm_slli_epi16(ul_ch_mag128b[2],2);// 2 to compensate the scale channel estimate

916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
#elif defined(__arm__)
          mmtmpU0 = vmull_s16(ul_ch128[0], ul_ch128[0]);
          mmtmpU0 = vqshlq_s32(vqaddq_s32(mmtmpU0,vrev64q_s32(mmtmpU0)),-output_shift128);
          mmtmpU1 = vmull_s16(ul_ch128[1], ul_ch128[1]);
          mmtmpU1 = vqshlq_s32(vqaddq_s32(mmtmpU1,vrev64q_s32(mmtmpU1)),-output_shift128);
          mmtmpU2 = vcombine_s16(vmovn_s32(mmtmpU0),vmovn_s32(mmtmpU1));
          mmtmpU0 = vmull_s16(ul_ch128[2], ul_ch128[2]);
          mmtmpU0 = vqshlq_s32(vqaddq_s32(mmtmpU0,vrev64q_s32(mmtmpU0)),-output_shift128);
          mmtmpU1 = vmull_s16(ul_ch128[3], ul_ch128[3]);
          mmtmpU1 = vqshlq_s32(vqaddq_s32(mmtmpU1,vrev64q_s32(mmtmpU1)),-output_shift128);
          mmtmpU3 = vcombine_s16(vmovn_s32(mmtmpU0),vmovn_s32(mmtmpU1));
          mmtmpU0 = vmull_s16(ul_ch128[4], ul_ch128[4]);
          mmtmpU0 = vqshlq_s32(vqaddq_s32(mmtmpU0,vrev64q_s32(mmtmpU0)),-output_shift128);
          mmtmpU1 = vmull_s16(ul_ch128[5], ul_ch128[5]);
          mmtmpU1 = vqshlq_s32(vqaddq_s32(mmtmpU1,vrev64q_s32(mmtmpU1)),-output_shift128);
          mmtmpU4 = vcombine_s16(vmovn_s32(mmtmpU0),vmovn_s32(mmtmpU1));

          ul_ch_mag128b[0] = vqdmulhq_s16(mmtmpU2,QAM_amp128b);
          ul_ch_mag128b[1] = vqdmulhq_s16(mmtmpU3,QAM_amp128b);
          ul_ch_mag128[0] = vqdmulhq_s16(mmtmpU2,QAM_amp128);
          ul_ch_mag128[1] = vqdmulhq_s16(mmtmpU3,QAM_amp128);
          ul_ch_mag128b[2] = vqdmulhq_s16(mmtmpU4,QAM_amp128b);
          ul_ch_mag128[2]  = vqdmulhq_s16(mmtmpU4,QAM_amp128);
#endif
940
      }
941

942
943
#else // SC-FDMA
// just compute channel magnitude without scaling, this is done after equalization for SC-FDMA
944

945
#if defined(__x86_64__) || defined(__i386__)
946
      mmtmpU0 = _mm_madd_epi16(ul_ch128[0],ul_ch128[0]);
947

948
949
950
951
      mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
      mmtmpU1 = _mm_madd_epi16(ul_ch128[1],ul_ch128[1]);

      mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
952

953
      mmtmpU0 = _mm_packs_epi32(mmtmpU0,mmtmpU1);
954

955
956
      ul_ch_mag128[0] = _mm_unpacklo_epi16(mmtmpU0,mmtmpU0);
      ul_ch_mag128[1] = _mm_unpackhi_epi16(mmtmpU0,mmtmpU0);
957

958
959
960
961
962
963
964
      mmtmpU0 = _mm_madd_epi16(ul_ch128[2],ul_ch128[2]);

      mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
      mmtmpU1 = _mm_packs_epi32(mmtmpU0,mmtmpU0);
      ul_ch_mag128[2] = _mm_unpacklo_epi16(mmtmpU1,mmtmpU1);

      // printf("comp: symbol %d rb %d => %d,%d,%d (output_shift %d)\n",symbol,rb,*((int16_t*)&ul_ch_mag128[0]),*((int16_t*)&ul_ch_mag128[1]),*((int16_t*)&ul_ch_mag128[2]),output_shift);
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984


#elif defined(__arm__)
          mmtmpU0 = vmull_s16(ul_ch128[0], ul_ch128[0]);
          mmtmpU0 = vqshlq_s32(vqaddq_s32(mmtmpU0,vrev64q_s32(mmtmpU0)),-output_shift128);
          mmtmpU1 = vmull_s16(ul_ch128[1], ul_ch128[1]);
          mmtmpU1 = vqshlq_s32(vqaddq_s32(mmtmpU1,vrev64q_s32(mmtmpU1)),-output_shift128);
          ul_ch_mag128[0] = vcombine_s16(vmovn_s32(mmtmpU0),vmovn_s32(mmtmpU1));
          mmtmpU0 = vmull_s16(ul_ch128[2], ul_ch128[2]);
          mmtmpU0 = vqshlq_s32(vqaddq_s32(mmtmpU0,vrev64q_s32(mmtmpU0)),-output_shift128);
          mmtmpU1 = vmull_s16(ul_ch128[3], ul_ch128[3]);
          mmtmpU1 = vqshlq_s32(vqaddq_s32(mmtmpU1,vrev64q_s32(mmtmpU1)),-output_shift128);
          ul_ch_mag128[1] = vcombine_s16(vmovn_s32(mmtmpU0),vmovn_s32(mmtmpU1));
          mmtmpU0 = vmull_s16(ul_ch128[4], ul_ch128[4]);
          mmtmpU0 = vqshlq_s32(vqaddq_s32(mmtmpU0,vrev64q_s32(mmtmpU0)),-output_shift128);
          mmtmpU1 = vmull_s16(ul_ch128[5], ul_ch128[5]);
          mmtmpU1 = vqshlq_s32(vqaddq_s32(mmtmpU1,vrev64q_s32(mmtmpU1)),-output_shift128);
          ul_ch_mag128[2] = vcombine_s16(vmovn_s32(mmtmpU0),vmovn_s32(mmtmpU1));

#endif
985
#endif
986

987
#if defined(__x86_64__) || defined(__i386__)
988
989
      // multiply by conjugated channel
      mmtmpU0 = _mm_madd_epi16(ul_ch128[0],rxdataF128[0]);
990
991
      //        print_ints("re",&mmtmpU0);

992
993
994
995
996
997
998
999
1000
      // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
      mmtmpU1 = _mm_shufflelo_epi16(ul_ch128[0],_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)&conjugate[0]);

      mmtmpU1 = _mm_madd_epi16(mmtmpU1,rxdataF128[0]);
      //      print_ints("im",&mmtmpU1);
      // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
1001
      //  print_ints("re(shift)",&mmtmpU0);
1002
      mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
1003
      //  print_ints("im(shift)",&mmtmpU1);
1004
1005
      mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
      mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);
1006
1007
      //        print_ints("c0",&mmtmpU2);
      //  print_ints("c1",&mmtmpU3);
1008
1009
      rxdataF_comp128[0] = _mm_packs_epi32(mmtmpU2,mmtmpU3);
      /*
1010
1011
1012
              print_shorts("rx:",&rxdataF128[0]);
              print_shorts("ch:",&ul_ch128[0]);
              print_shorts("pack:",&rxdataF_comp128[0]);
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
      */
      // multiply by conjugated channel
      mmtmpU0 = _mm_madd_epi16(ul_ch128[1],rxdataF128[1]);
      // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
      mmtmpU1 = _mm_shufflelo_epi16(ul_ch128[1],_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)conjugate);
      mmtmpU1 = _mm_madd_epi16(mmtmpU1,rxdataF128[1]);
      // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
      mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
      mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
      mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);
1026

1027
      rxdataF_comp128[1] = _mm_packs_epi32(mmtmpU2,mmtmpU3);
1028
1029
1030
      //        print_shorts("rx:",rxdataF128[1]);
      //        print_shorts("ch:",ul_ch128[1]);
      //        print_shorts("pack:",rxdataF_comp128[1]);
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
      //       multiply by conjugated channel
      mmtmpU0 = _mm_madd_epi16(ul_ch128[2],rxdataF128[2]);
      // mmtmpU0 contains real part of 4 consecutive outputs (32-bit)
      mmtmpU1 = _mm_shufflelo_epi16(ul_ch128[2],_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_shufflehi_epi16(mmtmpU1,_MM_SHUFFLE(2,3,0,1));
      mmtmpU1 = _mm_sign_epi16(mmtmpU1,*(__m128i*)conjugate);
      mmtmpU1 = _mm_madd_epi16(mmtmpU1,rxdataF128[2]);
      // mmtmpU1 contains imag part of 4 consecutive outputs (32-bit)
      mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
      mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
      mmtmpU2 = _mm_unpacklo_epi32(mmtmpU0,mmtmpU1);
      mmtmpU3 = _mm_unpackhi_epi32(mmtmpU0,mmtmpU1);
1043

1044
      rxdataF_comp128[2] = _mm_packs_epi32(mmtmpU2,mmtmpU3);
1045
1046
      //        print_shorts("rx:",rxdataF128[2]);
      //        print_shorts("ch:",ul_ch128[2]);
1047
      //        print_shorts("pack:",rxdataF_comp128[2]);
1048

1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
      // Add a jitter to compensate for the saturation in "packs" resulting in a bias on the DC after IDFT
      rxdataF_comp128[0] = _mm_add_epi16(rxdataF_comp128[0],(*(__m128i*)&jitter[0]));
      rxdataF_comp128[1] = _mm_add_epi16(rxdataF_comp128[1],(*(__m128i*)&jitter[0]));
      rxdataF_comp128[2] = _mm_add_epi16(rxdataF_comp128[2],(*(__m128i*)&jitter[0]));

      ul_ch128+=3;
      ul_ch_mag128+=3;
      ul_ch_mag128b+=3;
      rxdataF128+=3;
      rxdataF_comp128+=3;
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
#elif defined(__arm__)
        mmtmpU0 = vmull_s16(ul_ch128[0], rxdataF128[0]);
        //mmtmpU0 = [Re(ch[0])Re(rx[0]) Im(ch[0])Im(ch[0]) Re(ch[1])Re(rx[1]) Im(ch[1])Im(ch[1])] 
        mmtmpU1 = vmull_s16(ul_ch128[1], rxdataF128[1]);
        //mmtmpU1 = [Re(ch[2])Re(rx[2]) Im(ch[2])Im(ch[2]) Re(ch[3])Re(rx[3]) Im(ch[3])Im(ch[3])] 
        mmtmpU0 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpU0),vget_high_s32(mmtmpU0)),
                               vpadd_s32(vget_low_s32(mmtmpU1),vget_high_s32(mmtmpU1)));
        //mmtmpU0 = [Re(ch[0])Re(rx[0])+Im(ch[0])Im(ch[0]) Re(ch[1])Re(rx[1])+Im(ch[1])Im(ch[1]) Re(ch[2])Re(rx[2])+Im(ch[2])Im(ch[2]) Re(ch[3])Re(rx[3])+Im(ch[3])Im(ch[3])] 

        mmtmpU0b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[0],*(int16x4_t*)conj)), rxdataF128[0]);
        //mmtmpU0 = [-Im(ch[0])Re(rx[0]) Re(ch[0])Im(rx[0]) -Im(ch[1])Re(rx[1]) Re(ch[1])Im(rx[1])]
        mmtmpU1b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[1],*(int16x4_t*)conj)), rxdataF128[1]);
        //mmtmpU0 = [-Im(ch[2])Re(rx[2]) Re(ch[2])Im(rx[2]) -Im(ch[3])Re(rx[3]) Re(ch[3])Im(rx[3])]
        mmtmpU1 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpU0b),vget_high_s32(mmtmpU0b)),
                               vpadd_s32(vget_low_s32(mmtmpU1b),vget_high_s32(mmtmpU1b)));
        //mmtmpU1 = [-Im(ch[0])Re(rx[0])+Re(ch[0])Im(rx[0]) -Im(ch[1])Re(rx[1])+Re(ch[1])Im(rx[1]) -Im(ch[2])Re(rx[2])+Re(ch[2])Im(rx[2]) -Im(ch[3])Re(rx[3])+Re(ch[3])Im(rx[3])]

        mmtmpU0 = vqshlq_s32(mmtmpU0,-output_shift128);
        mmtmpU1 = vqshlq_s32(mmtmpU1,-output_shift128);
        rxdataF_comp128[0] = vcombine_s16(vmovn_s32(mmtmpU0),vmovn_s32(mmtmpU1));
        mmtmpU0 = vmull_s16(ul_ch128[2], rxdataF128[2]);
        mmtmpU1 = vmull_s16(ul_ch128[3], rxdataF128[3]);
        mmtmpU0 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpU0),vget_high_s32(mmtmpU0)),
                               vpadd_s32(vget_low_s32(mmtmpU1),vget_high_s32(mmtmpU1)));
        mmtmpU0b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[2],*(int16x4_t*)conj)), rxdataF128[2]);
        mmtmpU1b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[3],*(int16x4_t*)conj)), rxdataF128[3]);
        mmtmpU1 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpU0b),vget_high_s32(mmtmpU0b)),
                               vpadd_s32(vget_low_s32(mmtmpU1b),vget_high_s32(mmtmpU1b)));
        mmtmpU0 = vqshlq_s32(mmtmpU0,-output_shift128);
        mmtmpU1 = vqshlq_s32(mmtmpU1,-output_shift128);
        rxdataF_comp128[1] = vcombine_s16(vmovn_s32(mmtmpU0),vmovn_s32(mmtmpU1));

        mmtmpU0 = vmull_s16(ul_ch128[4], rxdataF128[4]);
        mmtmpU1 = vmull_s16(ul_ch128[5], rxdataF128[5]);
        mmtmpU0 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpU0),vget_high_s32(mmtmpU0)),
                               vpadd_s32(vget_low_s32(mmtmpU1),vget_high_s32(mmtmpU1)));

        mmtmpU0b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[4],*(int16x4_t*)conj)), rxdataF128[4]);
        mmtmpU1b = vmull_s16(vrev32_s16(vmul_s16(ul_ch128[5],*(int16x4_t*)conj)), rxdataF128[5]);
        mmtmpU1 = vcombine_s32(vpadd_s32(vget_low_s32(mmtmpU0b),vget_high_s32(mmtmpU0b)),
                               vpadd_s32(vget_low_s32(mmtmpU1b),vget_high_s32(mmtmpU1b)));

              
        mmtmpU0 = vqshlq_s32(mmtmpU0,-output_shift128);
        mmtmpU1 = vqshlq_s32(mmtmpU1,-output_shift128);
        rxdataF_comp128[2] = vcombine_s16(vmovn_s32(mmtmpU0),vmovn_s32(mmtmpU1));
              
              // Add a jitter to compensate for the saturation in "packs" resulting in a bias on the DC after IDFT
        rxdataF_comp128[0] = vqaddq_s16(rxdataF_comp128[0],(*(int16x8_t*)&jitter[0]));
        rxdataF_comp128[1] = vqaddq_s16(rxdataF_comp128[1],(*(int16x8_t*)&jitter[0]));
        rxdataF_comp128[2] = vqaddq_s16(rxdataF_comp128[2],(*(int16x8_t*)&jitter[0]));

      
        ul_ch128+=6;
        ul_ch_mag128+=3;
        ul_ch_mag128b+=3;
        rxdataF128+=6;
        rxdataF_comp128+=3;
              
#endif
1119
1120
1121
    }
  }

1122
#if defined(__x86_64__) || defined(__i386__)
1123
1124
  _mm_empty();
  _m_empty();
1125
#endif
1126
}
1127
1128
1129
1130




1131
#if defined(__x86_64__) || defined(__i386__)
1132
__m128i QAM_amp128U_0,QAM_amp128bU_0,QAM_amp128U_1,QAM_amp128bU_1;
1133
#endif
1134
1135

void ulsch_channel_compensation_alamouti(int32_t **rxdataF_ext,                 // For Distributed Alamouti Combining
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
    int32_t **ul_ch_estimates_ext_0,
    int32_t **ul_ch_estimates_ext_1,
    int32_t **ul_ch_mag_0,
    int32_t **ul_ch_magb_0,
    int32_t **ul_ch_mag_1,
    int32_t **ul_ch_magb_1,
    int32_t **rxdataF_comp_0,
    int32_t **rxdataF_comp_1,
    LTE_DL_FRAME_PARMS *frame_parms,
    uint8_t symbol,
    uint8_t Qm,
    uint16_t nb_rb,
    uint8_t output_shift)
{
1150
#if defined(__x86_64__) || defined(__i386__)
1151
1152
1153
1154
1155
1156
1157
1158
1159
  uint16_t rb;
  __m128i *ul_ch128_0,*ul_ch128_1,*ul_ch_mag128_0,*ul_ch_mag128_1,*ul_ch_mag128b_0,*ul_ch_mag128b_1,*rxdataF128,*rxdataF_comp128_0,*rxdataF_comp128_1;
  uint8_t aarx;//,symbol_mod;
  __m128i mmtmpU0,mmtmpU1,mmtmpU2,mmtmpU3;

  //  symbol_mod = (symbol>=(7-frame_parms->Ncp)) ? symbol-(7-frame_parms->Ncp) : symbol;

  //    printf("comp: symbol %d\n",symbol);

1160
1161

  if (Qm == 4) {
1162
1163
    QAM_amp128U_0 = _mm_set1_epi16(QAM16_n1);
    QAM_amp128U_1 = _mm_set1_epi16(QAM16_n1);
1164
  } else if (Qm == 6) {
1165
1166
1167
1168
1169
1170
    QAM_amp128U_0  = _mm_set1_epi16(QAM64_n1);
    QAM_amp128bU_0 = _mm_set1_epi16(QAM64_n2);

    QAM_amp128U_1  = _mm_set1_epi16(QAM64_n1);
    QAM_amp128bU_1 = _mm_set1_epi16(QAM64_n2);
  }
1171
1172
1173

  for (aarx=0; aarx<frame_parms->nb_antennas_rx; aarx++) {

1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
    ul_ch128_0          = (__m128i *)&ul_ch_estimates_ext_0[aarx][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_0      = (__m128i *)&ul_ch_mag_0[aarx][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128b_0     = (__m128i *)&ul_ch_magb_0[aarx][symbol*frame_parms->N_RB_DL*12];
    ul_ch128_1          = (__m128i *)&ul_ch_estimates_ext_1[aarx][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128_1      = (__m128i *)&ul_ch_mag_1[aarx][symbol*frame_parms->N_RB_DL*12];
    ul_ch_mag128b_1     = (__m128i *)&ul_ch_magb_1[aarx][symbol*frame_parms->N_RB_DL*12];
    rxdataF128        = (__m128i *)&rxdataF_ext[aarx][symbol*frame_parms->N_RB_DL*12];
    rxdataF_comp128_0   = (__m128i *)&rxdataF_comp_0[aarx][symbol*frame_parms->N_RB_DL*12];
    rxdataF_comp128_1   = (__m128i *)&rxdataF_comp_1[aarx][symbol*frame_parms->N_RB_DL*12];


1185
    for (rb=0; rb<nb_rb; rb++) {
1186
      //      printf("comp: symbol %d rb %d\n",symbol,rb);
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
      if (Qm>2) {
        // get channel amplitude if not QPSK

        mmtmpU0 = _mm_madd_epi16(ul_ch128_0[0],ul_ch128_0[0]);

        mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);

        mmtmpU1 = _mm_madd_epi16(ul_ch128_0[1],ul_ch128_0[1]);
        mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
        mmtmpU0 = _mm_packs_epi32(mmtmpU0,mmtmpU1);

        ul_ch_mag128_0[0] = _mm_unpacklo_epi16(mmtmpU0,mmtmpU0);
        ul_ch_mag128b_0[0] = ul_ch_mag128_0[0];
        ul_ch_mag128_0[0] = _mm_mulhi_epi16(ul_ch_mag128_0[0],QAM_amp128U_0);
        ul_ch_mag128_0[0] = _mm_slli_epi16(ul_ch_mag128_0[0],2); // 2 to compensate the scale channel estimate

        ul_ch_mag128_0[1] = _mm_unpackhi_epi16(mmtmpU0,mmtmpU0);
        ul_ch_mag128b_0[1] = ul_ch_mag128_0[1];
        ul_ch_mag128_0[1] = _mm_mulhi_epi16(ul_ch_mag128_0[1],QAM_amp128U_0);
        ul_ch_mag128_0[1] = _mm_slli_epi16(ul_ch_mag128_0[1],2); // 2 to scale compensate the scale channel estimate

        mmtmpU0 = _mm_madd_epi16(ul_ch128_0[2],ul_ch128_0[2]);
        mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
        mmtmpU1 = _mm_packs_epi32(mmtmpU0,mmtmpU0);

        ul_ch_mag128_0[2] = _mm_unpacklo_epi16(mmtmpU1,mmtmpU1);
        ul_ch_mag128b_0[2] = ul_ch_mag128_0[2];

        ul_ch_mag128_0[2] = _mm_mulhi_epi16(ul_ch_mag128_0[2],QAM_amp128U_0);
        ul_ch_mag128_0[2] = _mm_slli_epi16(ul_ch_mag128_0[2],2);  //  2 to scale compensate the scale channel estimat


        ul_ch_mag128b_0[0] = _mm_mulhi_epi16(ul_ch_mag128b_0[0],QAM_amp128bU_0);
        ul_ch_mag128b_0[0] = _mm_slli_epi16(ul_ch_mag128b_0[0],2);  //  2 to scale compensate the scale channel estima


        ul_ch_mag128b_0[1] = _mm_mulhi_epi16(ul_ch_mag128b_0[1],QAM_amp128bU_0);
        ul_ch_mag128b_0[1] = _mm_slli_epi16(ul_ch_mag128b_0[1],2);   //  2 to scale compensate the scale channel estima

        ul_ch_mag128b_0[2] = _mm_mulhi_epi16(ul_ch_mag128b_0[2],QAM_amp128bU_0);
        ul_ch_mag128b_0[2] = _mm_slli_epi16(ul_ch_mag128b_0[2],2);   //  2 to scale compensate the scale channel estima




        mmtmpU0 = _mm_madd_epi16(ul_ch128_1[0],ul_ch128_1[0]);

        mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);

        mmtmpU1 = _mm_madd_epi16(ul_ch128_1[1],ul_ch128_1[1]);
        mmtmpU1 = _mm_srai_epi32(mmtmpU1,output_shift);
        mmtmpU0 = _mm_packs_epi32(mmtmpU0,mmtmpU1);

        ul_ch_mag128_1[0] = _mm_unpacklo_epi16(mmtmpU0,mmtmpU0);
        ul_ch_mag128b_1[0] = ul_ch_mag128_1[0];
        ul_ch_mag128_1[0] = _mm_mulhi_epi16(ul_ch_mag128_1[0],QAM_amp128U_1);
        ul_ch_mag128_1[0] = _mm_slli_epi16(ul_ch_mag128_1[0],2); // 2 to compensate the scale channel estimate

        ul_ch_mag128_1[1] = _mm_unpackhi_epi16(mmtmpU0,mmtmpU0);
        ul_ch_mag128b_1[1] = ul_ch_mag128_1[1];
        ul_ch_mag128_1[1] = _mm_mulhi_epi16(ul_ch_mag128_1[1],QAM_amp128U_1);
        ul_ch_mag128_1[1] = _mm_slli_epi16(ul_ch_mag128_1[1],2); // 2 to scale compensate the scale channel estimate

        mmtmpU0 = _mm_madd_epi16(ul_ch128_1[2],ul_ch128_1[2]);
        mmtmpU0 = _mm_srai_epi32(mmtmpU0,output_shift);
        mmtmpU1 = _mm_packs_epi32(mmtmpU0,mmtmpU0);

        ul_ch_mag128_1[2] = _mm_unpacklo_epi16(mmtmpU1,mmtmpU1);
        ul_ch_mag128b_1[2] = ul_ch_mag128_1[2];

        ul_ch_mag128_1[2] = _mm_mulhi_epi16(ul_ch_mag128_1[2],QAM_amp128U_0);
        ul_ch_mag128_1[2] = _mm_slli_epi16(ul_ch_mag128_1[2],2);  //  2 to scale compensate the scale channel estimat


        ul_ch_mag128b_1[0] = _mm_mulhi_epi16(ul_ch_mag128b_1[0],QAM_amp128bU_1);
        ul_ch_mag128b_1[0] = _mm_slli_epi16(ul_ch_mag128b_1[0],2);  //  2 to scale compensate the scale channel estima


        ul_ch_mag128b_1[1] = _mm_mulhi_epi16(ul_ch_mag128b_1[1],QAM_amp128bU_1);
        ul_ch_mag128b_1[1] = _mm_slli_epi16(ul_ch_mag128b_1[1],2);   //  2 to scale compensate the scale channel estima

        ul_ch_mag128b_1[2] = _mm_mulhi_epi16(ul_ch_mag128b_1[2],QAM_amp128bU_1);
        ul_ch_mag128b_1[2] = _mm_slli_epi16(ul_ch_mag128b_1[2],2);   //  2 to scale compensate the scale channel estima
1270
      }
1271

1272
1273
1274
1275
1276

      /************************For Computing (y)*(h0*)********************************************/

      // multiply by conjugated channel
      mmtmpU0 = _mm_madd_epi16(ul_ch128_0[0],rxdataF128[0]);
1277
1278
      //  print_ints("re",&mmtmpU0);