Newer
Older
#include <stdlib.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include "rijndael.h"
#include "snow3g.h"
static uint8_t _MULx(uint8_t V, uint8_t c);
static uint8_t _MULxPOW(uint8_t V, uint8_t i, uint8_t c);
static uint32_t _MULalpha(uint8_t c);
static uint32_t _DIValpha(uint8_t c);
static uint32_t _S1(uint32_t w);
static uint32_t _S2(uint32_t w);
static void _snow3g_clock_LFSR_initialization_mode(uint32_t F, snow_3g_context_t *s3g_ctx_pP);
static void _snow3g_clock_LFSR_key_stream_mode(snow_3g_context_t *snow_3g_context_pP);
static uint32_t _snow3g_clock_fsm(snow_3g_context_t *snow_3g_context_pP);
void snow3g_initialize(uint32_t k[4], uint32_t IV[4], snow_3g_context_t *snow_3g_context_pP);
void snow3g_generate_key_stream(uint32_t n, uint32_t *ks, snow_3g_context_t *snow_3g_context_pP);
/* _MULx.
* Input V: an 8-bit input.
* Input c: an 8-bit input.
* Output : an 8-bit input.
* MULx maps 16 bits to 8 bits
*/
static uint8_t _MULx(uint8_t V, uint8_t c)
{
//If the leftmost (i.e. the most significant) bit of V equals 1
if ( V & 0x80 )
return ( (V << 1) ^ c);
else
return ( V << 1);
}
/* _MULxPOW.
* Input V: an 8-bit input.
* Input i: a positive integer.
* Input c: an 8-bit input.
* Output : an 8-bit output.
* MULxPOW maps 16 bits and a positive integer i to 8 bit.
*/
static uint8_t _MULxPOW(uint8_t V, uint8_t i, uint8_t c)
{
if ( i == 0)
return V;
else
return _MULx( _MULxPOW( V, i-1, c ), c);
}
/* The function _MULalpha.
* Input c: 8-bit input.
* Output : 32-bit output.
* maps 8 bits to 32 bits.
*/
static uint32_t _MULalpha(uint8_t c)
{
return ( ( ((uint32_t)_MULxPOW(c,23, 0xa9)) << 24 ) |
( ((uint32_t)_MULxPOW(c, 245, 0xa9)) << 16 ) |
( ((uint32_t)_MULxPOW(c, 48, 0xa9)) << 8 ) |
( ((uint32_t)_MULxPOW(c, 239, 0xa9)) ) ) ;
}
/* The function DIV alpha.
* Input c: 8-bit input.
* Output : 32-bit output.
* maps 8 bits to 32 bit.
*/
static uint32_t _DIValpha(uint8_t c)
{
return ( ( ((uint32_t)_MULxPOW(c, 16, 0xa9)) << 24 ) |
( ((uint32_t)_MULxPOW(c, 39, 0xa9)) << 16 ) |
( ((uint32_t)_MULxPOW(c, 6, 0xa9)) << 8 ) |
( ((uint32_t)_MULxPOW(c, 64, 0xa9)) ) ) ;
}
/* The 32x32-bit S-Box S1
* Input: a 32-bit input.
* Output: a 32-bit output of S1 box.
* The S-Box S1 maps a 32-bit input to a 32-bit output.
* w = w0 || w1 || w2 || w3 the 32-bit input with w0 the most and w3 the least significant byte.
* S1(w)= r0 || r1 || r2 || r3 with r0 the most and r3 the least significant byte.
*/
static uint32_t _S1(uint32_t w)
{
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
uint8_t r0=0, r1=0, r2=0, r3=0;
uint8_t srw0 = SR[ (uint8_t)((w >> 24) & 0xff) ];
uint8_t srw1 = SR[ (uint8_t)((w >> 16) & 0xff) ];
uint8_t srw2 = SR[ (uint8_t)((w >> 8) & 0xff) ];
uint8_t srw3 = SR[ (uint8_t)((w) & 0xff) ];
r0 = ( ( _MULx( srw0 , 0x1b) ) ^
( srw1 ) ^
( srw2 ) ^
( (_MULx( srw3, 0x1b)) ^ srw3 )
);
r1 = ( ( ( _MULx( srw0 , 0x1b) ) ^ srw0 ) ^
( _MULx(srw1, 0x1b) ) ^
( srw2 ) ^
( srw3 )
);
r2 = ( ( srw0 ) ^
( ( _MULx( srw1 , 0x1b) ) ^ srw1 ) ^
( _MULx(srw2, 0x1b) ) ^
( srw3 )
);
r3 = ( ( srw0 ) ^
( srw1 ) ^
( ( _MULx( srw2 , 0x1b) ) ^ srw2 ) ^
( _MULx( srw3, 0x1b) )
);
return ( ( ((uint32_t)r0) << 24 ) | ( ((uint32_t)r1) << 16 ) | ( ((uint32_t)r2) << 8 ) | ( ((uint32_t)r3) ) );
}
/* The 32x32-bit S-Box S2
* Input: a 32-bit input.
* Output: a 32-bit output of S2 box.
* The S-Box S2 maps a 32-bit input to a 32-bit output.
* Let w = w0 || w1 || w2 || w3 the 32-bit input with w0 the most and w3 the least significant byte.
* Let S2(w)= r0 || r1 || r2 || r3 with r0 the most and r3 the least significant byte.
*/
static uint32_t _S2(uint32_t w)
{
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
uint8_t r0=0, r1=0, r2=0, r3=0;
uint8_t sqw0 = SQ[ (uint8_t)((w >> 24) & 0xff) ];
uint8_t sqw1 = SQ[ (uint8_t)((w >> 16) & 0xff) ];
uint8_t sqw2 = SQ[ (uint8_t)((w >> 8) & 0xff) ];
uint8_t sqw3 = SQ[ (uint8_t)((w) & 0xff) ];
r0 = ( ( _MULx( sqw0 , 0x69) ) ^
( sqw1 ) ^
( sqw2 ) ^
( (_MULx( sqw3, 0x69)) ^ sqw3 )
);
r1 = ( ( ( _MULx( sqw0 , 0x69) ) ^ sqw0 ) ^
( _MULx(sqw1, 0x69) ) ^
( sqw2 ) ^
( sqw3 )
);
r2 = ( ( sqw0 ) ^
( ( _MULx( sqw1 , 0x69) ) ^ sqw1 ) ^
( _MULx(sqw2, 0x69) ) ^
( sqw3 )
);
r3 = ( ( sqw0 ) ^
( sqw1 ) ^
( ( _MULx( sqw2 , 0x69) ) ^ sqw2 ) ^
( _MULx( sqw3, 0x69) )
);
return ( ( ((uint32_t)r0) << 24 ) | ( ((uint32_t)r1) << 16 ) | ( ((uint32_t)r2) << 8 ) | ( ((uint32_t)r3) ) );
}
/* Clocking LFSR in initialization mode.
* LFSR Registers S0 to S15 are updated as the LFSR receives a single clock.
* Input F: a 32-bit word comes from output of FSM.
* See section 3.4.4.
*/
static void _snow3g_clock_LFSR_initialization_mode(uint32_t F, snow_3g_context_t *s3g_ctx_pP)
{
uint32_t v = ( ( (s3g_ctx_pP->LFSR_S0 << 8) & 0xffffff00 ) ^
( _MULalpha( (uint8_t)((s3g_ctx_pP->LFSR_S0>>24) & 0xff) ) ) ^
( s3g_ctx_pP->LFSR_S2 ) ^
( (s3g_ctx_pP->LFSR_S11 >> 8) & 0x00ffffff ) ^
( _DIValpha( (uint8_t)( ( s3g_ctx_pP->LFSR_S11) & 0xff ) ) ) ^
( F )
);
s3g_ctx_pP->LFSR_S0 = s3g_ctx_pP->LFSR_S1;
s3g_ctx_pP->LFSR_S1 = s3g_ctx_pP->LFSR_S2;
s3g_ctx_pP->LFSR_S2 = s3g_ctx_pP->LFSR_S3;
s3g_ctx_pP->LFSR_S3 = s3g_ctx_pP->LFSR_S4;
s3g_ctx_pP->LFSR_S4 = s3g_ctx_pP->LFSR_S5;
s3g_ctx_pP->LFSR_S5 = s3g_ctx_pP->LFSR_S6;
s3g_ctx_pP->LFSR_S6 = s3g_ctx_pP->LFSR_S7;
s3g_ctx_pP->LFSR_S7 = s3g_ctx_pP->LFSR_S8;
s3g_ctx_pP->LFSR_S8 = s3g_ctx_pP->LFSR_S9;
s3g_ctx_pP->LFSR_S9 = s3g_ctx_pP->LFSR_S10;
s3g_ctx_pP->LFSR_S10 = s3g_ctx_pP->LFSR_S11;
s3g_ctx_pP->LFSR_S11 = s3g_ctx_pP->LFSR_S12;
s3g_ctx_pP->LFSR_S12 = s3g_ctx_pP->LFSR_S13;
s3g_ctx_pP->LFSR_S13 = s3g_ctx_pP->LFSR_S14;
s3g_ctx_pP->LFSR_S14 = s3g_ctx_pP->LFSR_S15;
s3g_ctx_pP->LFSR_S15 = v;
}
/* Clocking LFSR in keystream mode.
* LFSR Registers S0 to S15 are updated as the LFSR receives a single clock.
* See section 3.4.5.
*/
static void _snow3g_clock_LFSR_key_stream_mode(snow_3g_context_t *snow_3g_context_pP)
{
uint32_t v = ( ( (snow_3g_context_pP->LFSR_S0 << 8) & 0xffffff00 ) ^
( _MULalpha( (uint8_t)((snow_3g_context_pP->LFSR_S0>>24) & 0xff) ) ) ^
( snow_3g_context_pP->LFSR_S2 ) ^
( (snow_3g_context_pP->LFSR_S11 >> 8) & 0x00ffffff ) ^
( _DIValpha( (uint8_t)( ( snow_3g_context_pP->LFSR_S11) & 0xff ) ) )
);
snow_3g_context_pP->LFSR_S0 = snow_3g_context_pP->LFSR_S1;
snow_3g_context_pP->LFSR_S1 = snow_3g_context_pP->LFSR_S2;
snow_3g_context_pP->LFSR_S2 = snow_3g_context_pP->LFSR_S3;
snow_3g_context_pP->LFSR_S3 = snow_3g_context_pP->LFSR_S4;
snow_3g_context_pP->LFSR_S4 = snow_3g_context_pP->LFSR_S5;
snow_3g_context_pP->LFSR_S5 = snow_3g_context_pP->LFSR_S6;
snow_3g_context_pP->LFSR_S6 = snow_3g_context_pP->LFSR_S7;
snow_3g_context_pP->LFSR_S7 = snow_3g_context_pP->LFSR_S8;
snow_3g_context_pP->LFSR_S8 = snow_3g_context_pP->LFSR_S9;
snow_3g_context_pP->LFSR_S9 = snow_3g_context_pP->LFSR_S10;
snow_3g_context_pP->LFSR_S10 = snow_3g_context_pP->LFSR_S11;
snow_3g_context_pP->LFSR_S11 = snow_3g_context_pP->LFSR_S12;
snow_3g_context_pP->LFSR_S12 = snow_3g_context_pP->LFSR_S13;
snow_3g_context_pP->LFSR_S13 = snow_3g_context_pP->LFSR_S14;
snow_3g_context_pP->LFSR_S14 = snow_3g_context_pP->LFSR_S15;
snow_3g_context_pP->LFSR_S15 = v;
}
/* Clocking FSM.
* Produces a 32-bit word F.
* Updates FSM registers R1, R2, R3.
* See Section 3.4.6.
*/
static uint32_t _snow3g_clock_fsm(snow_3g_context_t *snow_3g_context_pP)
{
uint32_t F = ( ( snow_3g_context_pP->LFSR_S15 + snow_3g_context_pP->FSM_R1 ) & 0xffffffff ) ^ snow_3g_context_pP->FSM_R2 ;
uint32_t r = ( snow_3g_context_pP->FSM_R2 + ( snow_3g_context_pP->FSM_R3 ^ snow_3g_context_pP->LFSR_S5 ) ) & 0xffffffff ;
snow_3g_context_pP->FSM_R3 = _S2(snow_3g_context_pP->FSM_R2);
snow_3g_context_pP->FSM_R2 = _S1(snow_3g_context_pP->FSM_R1);
snow_3g_context_pP->FSM_R1 = r;
return F;
/* Initialization.
* Input k[4]: Four 32-bit words making up 128-bit key.
* Input IV[4]: Four 32-bit words making 128-bit initialization variable.
* Output: All the LFSRs and FSM are initialized for key generation.
* See Section 4.1.
*/
void snow3g_initialize(uint32_t k[4], uint32_t IV[4], snow_3g_context_t *snow_3g_context_pP)
{
uint8_t i = 0;
uint32_t F = 0x0;
snow_3g_context_pP->LFSR_S15 = k[3] ^ IV[0];
snow_3g_context_pP->LFSR_S14 = k[2];
snow_3g_context_pP->LFSR_S13 = k[1];
snow_3g_context_pP->LFSR_S12 = k[0] ^ IV[1];
snow_3g_context_pP->LFSR_S11 = k[3] ^ 0xffffffff;
snow_3g_context_pP->LFSR_S10 = k[2] ^ 0xffffffff ^ IV[2];
snow_3g_context_pP->LFSR_S9 = k[1] ^ 0xffffffff ^ IV[3];
snow_3g_context_pP->LFSR_S8 = k[0] ^ 0xffffffff;
snow_3g_context_pP->LFSR_S7 = k[3];
snow_3g_context_pP->LFSR_S6 = k[2];
snow_3g_context_pP->LFSR_S5 = k[1];
snow_3g_context_pP->LFSR_S4 = k[0];
snow_3g_context_pP->LFSR_S3 = k[3] ^ 0xffffffff;
snow_3g_context_pP->LFSR_S2 = k[2] ^ 0xffffffff;
snow_3g_context_pP->LFSR_S1 = k[1] ^ 0xffffffff;
snow_3g_context_pP->LFSR_S0 = k[0] ^ 0xffffffff;
snow_3g_context_pP->FSM_R1 = 0x0;
snow_3g_context_pP->FSM_R2 = 0x0;
snow_3g_context_pP->FSM_R3 = 0x0;
for(i=0; i<32; i++) {
F = _snow3g_clock_fsm(snow_3g_context_pP);
_snow3g_clock_LFSR_initialization_mode(F, snow_3g_context_pP);
}
/* Generation of Keystream.
* input n: number of 32-bit words of keystream.
* input z: space for the generated keystream, assumes
* memory is allocated already.
* output: generated keystream which is filled in z
* See section 4.2.
*/
void snow3g_generate_key_stream(uint32_t n, uint32_t *ks, snow_3g_context_t *snow_3g_context_pP)
{
uint32_t t = 0;
uint32_t F = 0x0;
_snow3g_clock_fsm(snow_3g_context_pP); /* Clock FSM once. Discard the output. */
_snow3g_clock_LFSR_key_stream_mode(snow_3g_context_pP); /* Clock LFSR in keystream mode once. */
for ( t=0; t<n; t++) {
F = _snow3g_clock_fsm(snow_3g_context_pP); /* STEP 1 */
ks[t] = F ^ snow_3g_context_pP->LFSR_S0; /* STEP 2 */
/* Note that ks[t] corresponds to z_{t+1} in section 4.2*/
_snow3g_clock_LFSR_key_stream_mode(snow_3g_context_pP); /* STEP 3 */
}