-
Raphael Defosseux authoredRaphael Defosseux authored
- OpenAirInterface Block diagram
- OpenAirInterface eNB Feature Set
- eNB PHY Layer
- Performances
- eNB MAC Layer
- eNB RLC Layer
- eNB PDCP Layer
- eNB RRC Layer
- eNB X2AP
- eNB Advanced Features
- OpenAirInterface Functional Split
- OpenAirInterface UE Feature Set
- LTE UE PHY Layer
- LTE UE MAC Layer
- LTE UE RLC Layer
- LTE UE PDCP Layer
- LTE UE RRC Layer
- LTE UE NAS Layer
Table of Contents
OpenAirInterface Block diagram
OpenAirInterface eNB Feature Set
eNB PHY Layer
The Physical layer implements 3GPP 36.211, 36.212, 36.213 and provides the following features:
- LTE release 8.6 compliant, and implements a subset of release 10
- FDD and TDD configurations: 1 (experimental) and 3
- Bandwidth: 5, 10, and 20 MHz
- Transmission modes: 1, 2 (stable), 3, 4, 5, 6, 7 (experimental)
- Max number of antennas: 2
- CQI/PMI reporting: aperiodic, feedback mode 3 - 0 and 3 - 1
- PRACH preamble format 0
- All downlink (DL) channels are supported: PSS, SSS, PBCH, PCFICH, PHICH, PDCCH, PDSCH, PMCH
- All uplink (UL) channels are supported: PRACH, PUSCH, PUCCH (format 1/1a/1b), SRS, DRS
- HARQ support (UL and DL)
- Highly optimized base band processing (including turbo decoder)
Performances
Transmission Mode, Bandwidth | Expected Throughput | Measured Throughput | Measurement Conditions |
---|---|---|---|
FDD DL: 5 MHz, 25 PRBS/ MCS 28 | 16 - 17 Mbit/s | TM1: 17.0 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
FDD DL: 10 MHz, 50 PRBS/ MCS 28 | 34 - 35 Mbit/s | TM1: 32.8 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
FDD DL: 20 MHz, 100 PRBS/ MCS 28 | 70 Mbit/s | TM1: 69.9 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
FDD UL: 5 MHz, 25 PRBS/ MCS 20 | 9 Mbit/s | TM1: 8.28 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
FDD UL: 10 MHz, 50 PRBS/ MCS 20 | 17 Mbit/s | TM1: 15.2 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
FDD UL: 20 MHz, 100 PRBS/ MCS 20 | 35 Mbit/s | TM1: 18.6 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
TDD DL: 5 MHz, 25 PRBS/ MCS XX | TBC Mbit/s | 3.33 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
TDD DL: 10 MHz, 50 PRBS/ MCS XX | TBC Mbit/s | 8.90 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
TDD DL: 20 MHz, 100 PRBS/ MCS XX | TBC Mbit/s | N/A | COTS-UE Cat 4 (150/50 Mbps) |
TDD UL: 5 MHz, 25 PRBS/ MCS XX | TBC Mbit/s | 1.66 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
TDD UL: 10 MHz, 50 PRBS/ MCS XX | TBC Mbit/s | 1.89 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
TDD UL: 20 MHz, 100 PRBS/ MCS XX | TBC Mbit/s | N/A | COTS-UE Cat 4 (150/50 Mbps) |
- Number of supported UEs: To Be Completed
eNB MAC Layer
The MAC layer implements a subset of the 3GPP 36.321 release v8.6 in support of BCH, DLSCH, RACH, and ULSCH channels.
- RRC interface for CCCH, DCCH, and DTCH
- Proportional fair scheduler (round robin scheduler soon)
- DCI generation
- HARQ Support
- RA procedures and RNTI management
- RLC interface (AM, UM)
- UL power control
- Link adaptation
eNB RLC Layer
The RLC layer implements a full specification of the 3GPP 36.322 release v9.3.
- RLC TM (mainly used for BCCH and CCCH)
- Neither segment nor concatenate RLC SDUs
- Do not include a RLC header in the RLC PDU
- Delivery of received RLC PDUs to upper layers
- RLC UM (mainly used for DTCH)
- Segment or concatenate RLC SDUs according to the TB size selected by MAC
- Include a RLC header in the RLC PDU
- Duplication detection
- PDU reordering and reassembly
- RLC AM, compatible with 9.3
- Segmentation, re-segmentation, concatenation, and reassembly
- Padding
- Data transfer to the user
- RLC PDU retransmission in support of error control and correction
- Generation of data/control PDUs
eNB PDCP Layer
The current PDCP layer is header compliant with 3GPP 36.323 Rel 10.1.0 and implements the following functions:
- User and control data transfer
- Sequence number management
- RB association with PDCP entity
- PDCP entity association with one or two RLC entities
- Integrity check and encryption using the AES and Snow3G algorithms
eNB RRC Layer
The RRC layer is based on 3GPP 36.331 v14.3.0 and implements the following functions:
- System Information broadcast (SIB 1, 2, 3, and 13)
- SIB1: Up to 6 PLMN IDs broadcast
- RRC connection establishment
- RRC connection reconfiguration (addition and removal of radio bearers, connection release)
- RRC connection release
- RRC connection re-establishment
- Inter-frequency measurement collection and reporting (experimental)
- eMBMS for multicast and broadcast (experimental)
- Handover (experimental)
- Paging (soon)
eNB X2AP
The X2AP layer is based on 3GPP 36.423 v14.6.0 and implements the following functions:
- X2 Setup Request
- X2 Setup Response
- X2 Setup Failure
- Handover Request
- Handover Request Acknowledge
- UE Context Release
- X2 timers (t_reloc_prep, tx2_reloc_overall)
- Handover Cancel
eNB Advanced Features
To be completed
OpenAirInterface Functional Split
- RCC: Radio-Cloud Center
- RAU: Radio-Access Unit
- RRU: Remote Radio-Unit
- IF4.5 / IF5 : similar to IEEE P1914.1
- FAPI (IF2) : specified by Small Cell Forum (open-nFAPI implementation)
- IF1 : F1 in 3GPP Release 15 (not implemented yet)
OpenAirInterface UE Feature Set
LTE UE PHY Layer
The Physical layer implements 3GPP 36.211, 36.212, 36.213 and provides the following features:
- LTE release 8.6 compliant, and implements a subset of release 10
- FDD and TDD configurations: 1 (experimental) and 3
- Bandwidth: 5, 10, and 20 MHz
- Transmission modes: 1, 2 (stable)
- Max number of antennas: 2
- CQI/PMI reporting: aperiodic, feedback mode 3 - 0 and 3 - 1
- PRACH preamble format 0
- All downlink (DL) channels are supported: PSS, SSS, PBCH, PCFICH, PHICH, PDCCH, PDSCH, PMCH
- All uplink (UL) channels are supported: PRACH, PUSCH, PUCCH (format 1/1a/1b), SRS, DRS
LTE UE MAC Layer
The MAC layer implements a subset of the 3GPP 36.321 release v8.6 in support of BCH, DLSCH, RACH, and ULSCH channels.
- RRC interface for CCCH, DCCH, and DTCH
- HARQ Support
- RA procedures and RNTI management
- RLC interface (AM, UM)
- UL power control
- Link adaptation
LTE UE RLC Layer
The RLC layer implements a full specification of the 3GPP 36.322 release v9.3.
LTE UE PDCP Layer
The current PDCP layer is header compliant with 3GPP 36.323 Rel 10.1.0.
LTE UE RRC Layer
The RRC layer is based on 3GPP 36.331 v14.3.0 and implements the following functions:
- System Information decoding
- RRC connection establishment
LTE UE NAS Layer
The NAS layer is based on 3GPP 24.301 and implements the following functions:
- EMM attach/detach, authentication, tracking area update, and more
- ESM default/dedicated bearer, PDN connectivity, and more