Forked from
oai / openairinterface5G
21511 commits behind the upstream repository.
-
Sebastian Wagner authoredSebastian Wagner authored
coding_defs.h 17.99 KiB
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/* file: PHY/CODING/defs.h
purpose: Top-level definitions, data types and function prototypes for openairinterface coding blocks
author: raymond.knopp@eurecom.fr
date: 21.10.2009
*/
#ifndef __CODING_DEFS__H__
#define __CODING_DEFS__H__
#include <stdint.h>
#define CRC24_A 0
#define CRC24_B 1
#define CRC16 2
#define CRC8 3
#define MAX_TURBO_ITERATIONS_MBSFN 8
#define MAX_TURBO_ITERATIONS max_turbo_iterations
#define LTE_NULL 2
/** @addtogroup _PHY_CODING_BLOCKS_
* @{
*/
/** \fn lte_segmentation(uint8_t *input_buffer,
uint8_t **output_buffers,
uint32_t B,
uint32_t *C,
uint32_t *Cplus,
uint32_t *Cminus,
uint32_t *Kplus,
uint32_t *Kminus,
uint32_t *F)
\brief This function implements the LTE transport block segmentation algorithm from 36-212, V8.6 2009-03.
@param input_buffer
@param output_buffers
@param B
@param C
@param Cplus
@param Cminus
@param Kplus
@param Kminus
@param F
*/
int32_t lte_segmentation(uint8_t *input_buffer,
uint8_t **output_buffers,
uint32_t B,
uint32_t *C,
uint32_t *Cplus,
uint32_t *Cminus,
uint32_t *Kplus,
uint32_t *Kminus,
uint32_t *F);
/** \fn uint32_t sub_block_interleaving_turbo(uint32_t D, uint8_t *d,uint8_t *w)
\brief This is the subblock interleaving algorithm from 36-212 (Release 8, 8.6 2009-03), pages 15-16.
This function takes the d-sequence and generates the w-sequence. The nu-sequence from 36-212 is implicit.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param d Pointer to input (d-sequence, turbo code output)
\param w Pointer to output (w-sequence, interleaver output)
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$ from 36-212)
*/
uint32_t sub_block_interleaving_turbo(uint32_t D, uint8_t *d,uint8_t *w);
/** \fn uint32_t sub_block_interleaving_cc(uint32_t D, uint8_t *d,uint8_t *w)
\brief This is the subblock interleaving algorithm for convolutionally coded blocks from 36-212 (Release 8, 8.6 2009-03), pages 15-16.
This function takes the d-sequence and generates the w-sequence. The nu-sequence from 36-212 is implicit.
\param D Number of input bits
\param d Pointer to input (d-sequence, convolutional code output)
\param w Pointer to output (w-sequence, interleaver output)
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$ from 36-212)
*/
uint32_t sub_block_interleaving_cc(uint32_t D, uint8_t *d,uint8_t *w);
/** \fn void sub_block_deinterleaving_turbo(uint32_t D, int16_t *d,int16_t *w)
\brief This is the subblock deinterleaving algorithm from 36-212 (Release 8, 8.6 2009-03), pages 15-16.
This function takes the w-sequence and generates the d-sequence. The nu-sequence from 36-212 is implicit.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param d Pointer to output (d-sequence, turbo code output)
\param w Pointer to input (w-sequence, interleaver output)
*/
void sub_block_deinterleaving_turbo(uint32_t D, int16_t *d,int16_t *w);
/** \fn void sub_block_deinterleaving_cc(uint32_t D, int8_t *d,int8_t *w)
\brief This is the subblock deinterleaving algorithm for convolutionally-coded data from 36-212 (Release 8, 8.6 2009-03), pages 15-16.
This function takes the w-sequence and generates the d-sequence. The nu-sequence from 36-212 is implicit.
\param D Number of input bits
\param d Pointer to output (d-sequence, turbo code output)
\param w Pointer to input (w-sequence, interleaver output)
*/
void sub_block_deinterleaving_cc(uint32_t D,int8_t *d,int8_t *w);
/** \fn generate_dummy_w(uint32_t D, uint8_t *w,uint8_t F)
\brief This function generates a dummy interleaved sequence (first row) for receiver, in order to identify
the NULL positions used to make the matrix complete.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param w This is the dummy sequence (first row), it will contain zeros and at most 31 "LTE_NULL" values
\param F Number of filler bits due added during segmentation
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$ from 36-212)
*/
uint32_t generate_dummy_w(uint32_t D, uint8_t *w, uint8_t F);
/** \fn generate_dummy_w_cc(uint32_t D, uint8_t *w)
\brief This function generates a dummy interleaved sequence (first row) for receiver (convolutionally-coded data), in order to identify the NULL positions used to make the matrix complete.
\param D Number of systematic bits plus 4 (plus 4 for termination)
\param w This is the dummy sequence (first row), it will contain zeros and at most 31 "LTE_NULL" values
\returns Interleaving matrix cardinality (\f$K_{\pi}\f$ from 36-212)
*/
uint32_t generate_dummy_w_cc(uint32_t D, uint8_t *w);
/** \fn uint32_t lte_rate_matching_turbo(uint32_t RTC,
uint32_t G,
uint8_t *w,
uint8_t *e,
uint8_t C,
uint32_t Nsoft,
uint8_t Mdlharq,
uint8_t Kmimo,
uint8_t rvidx,
uint8_t Qm,
uint8_t Nl,
uint8_t r)
\brief This is the LTE rate matching algorithm for Turbo-coded channels (e.g. DLSCH,ULSCH). It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RTC R^TC_subblock from subblock interleaver (number of rows in interleaving matrix) for up to 8 segments
\param G This the number of coded transport bits allocated in sub-frame
\param w This is a pointer to the w-sequence (second interleaver output)
\param e This is a pointer to the e-sequence (rate matching output, channel input/output bits)
\param C Number of segments (codewords) in the sub-frame
\param Nsoft Total number of soft bits (from UE capabilities in 36-306)
\param Mdlharq Number of HARQ rounds
\param Kmimo MIMO capability for this DLSCH (0 = no MIMO)
\param rvidx round index (0-3)
\param Qm modulation order (2,4,6)
\param Nl number of layers (1,2)
\param r segment number
\param nb_rb Number of PRBs
\returns \f$E\f$, the number of coded bits per segment */
uint32_t lte_rate_matching_turbo(uint32_t RTC,
uint32_t G,
uint8_t *w,
uint8_t *e,
uint8_t C,
uint32_t Nsoft,
uint8_t Mdlharq,
uint8_t Kmimo,
uint8_t rvidx,
uint8_t Qm,
uint8_t Nl,
uint8_t r,
uint8_t nb_rb);
/**
\brief This is the LTE rate matching algorithm for Convolutionally-coded channels (e.g. BCH,DCI,UCI). It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RCC R^CC_subblock from subblock interleaver (number of rows in interleaving matrix) for up to 8 segments
\param E Number of coded channel bits
\param w This is a pointer to the w-sequence (second interleaver output)
\param e This is a pointer to the e-sequence (rate matching output, channel input/output bits)
\returns \f$E\f$, the number of coded bits per segment */
uint32_t lte_rate_matching_cc(uint32_t RCC,
uint16_t E,
uint8_t *w,
uint8_t *e);
/**
\brief This is the LTE rate matching algorithm for Turbo-coded channels (e.g. DLSCH,ULSCH). It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RTC R^TC_subblock from subblock interleaver (number of rows in interleaving matrix)
\param G This the number of coded transport bits allocated in sub-frame
\param w This is a pointer to the soft w-sequence (second interleaver output) with soft-combined outputs from successive HARQ rounds
\param dummy_w This is the first row of the interleaver matrix for identifying/discarding the "LTE-NULL" positions
\param soft_input This is a pointer to the soft channel output
\param C Number of segments (codewords) in the sub-frame
\param Nsoft Total number of soft bits (from UE capabilities in 36-306)
\param Mdlharq Number of HARQ rounds
\param Kmimo MIMO capability for this DLSCH (0 = no MIMO)
\param rvidx round index (0-3)
\param clear 1 means clear soft buffer (start of HARQ round)
\param Qm modulation order (2,4,6)
\param Nl number of layers (1,2)
\param r segment number
\param E_out the number of coded bits per segment
\returns 0 on success, -1 on failure
*/
int lte_rate_matching_turbo_rx(uint32_t RTC,
uint32_t G,
int16_t *w,
uint8_t *dummy_w,
int16_t *soft_input,
uint8_t C,
uint32_t Nsoft,
uint8_t Mdlharq,
uint8_t Kmimo,
uint8_t rvidx,
uint8_t clear,
uint8_t Qm,
uint8_t Nl,
uint8_t r,
uint32_t *E_out);
uint32_t lte_rate_matching_turbo_rx_abs(uint32_t RTC,
uint32_t G,
double *w,
uint8_t *dummy_w,
double *soft_input,
uint8_t C,
uint32_t Nsoft,
uint8_t Mdlharq,
uint8_t Kmimo,
uint8_t rvidx,
uint8_t clear,
uint8_t Qm,
uint8_t Nl,
uint8_t r,
uint32_t *E_out);
/**
\brief This is the LTE rate matching algorithm for Convolutionally-coded channels (e.g. BCH,DCI,UCI). It is taken directly from 36-212 (Rel 8 8.6, 2009-03), pages 16-18 )
\param RCC R^CC_subblock from subblock interleaver (number of rows in interleaving matrix)
\param E This the number of coded bits allocated for channel
\param w This is a pointer to the soft w-sequence (second interleaver output) with soft-combined outputs from successive HARQ rounds
\param dummy_w This is the first row of the interleaver matrix for identifying/discarding the "LTE-NULL" positions
\param soft_input This is a pointer to the soft channel output
\returns \f$E\f$, the number of coded bits per segment
*/
void lte_rate_matching_cc_rx(uint32_t RCC,
uint16_t E,
int8_t *w,
uint8_t *dummy_w,
int8_t *soft_input);
/** \fn void ccodedot11_encode(uint32_t numbytes,uint8_t *inPtr,uint8_t *outPtr,uint8_t puncturing)
\brief This function implements a rate 1/2 constraint length 7 convolutional code.
@param numbytes Number of bytes to encode
@param inPtr Pointer to input buffer
@param outPtr Pointer to output buffer
@param puncturing Puncturing pattern (Not used at present, to be removed)
*/
void ccodedot11_encode (uint32_t numbytes,
uint8_t *inPtr,
uint8_t *outPtr,
uint8_t puncturing);
/*!\fn void ccodedot11_init(void)
\brief This function initializes the generator polynomials for an 802.11 convolutional code.*/
void ccodedot11_init(void);
/*!\fn void ccodedot11_init_inv(void)
\brief This function initializes the trellis structure for decoding an 802.11 convolutional code.*/
void ccodedot11_init_inv(void);
/** \fn void ccodelte_encode(int32_t numbits,uint8_t add_crc, uint8_t *inPtr,uint8_t *outPtr,uint16_t rnti)
\brief This function implements the LTE convolutional code of rate 1/3
with a constraint length of 7 bits. The inputs are bit packed in octets
(from MSB to LSB). Trellis tail-biting is included here.
@param numbits Number of bits to encode
@param add_crc crc to be appended (8 bits) if add_crc = 1
@param inPtr Pointer to input buffer
@param outPtr Pointer to output buffer
@param rnti RNTI for CRC scrambling
*/
void
ccodelte_encode (int32_t numbits,
uint8_t add_crc,
uint8_t *inPtr,
uint8_t *outPtr,
uint16_t rnti);
/*!\fn void ccodelte_init(void)
\brief This function initializes the generator polynomials for an LTE convolutional code.*/
void ccodelte_init(void);
/*!\fn void ccodelte_init_inv(void)
\brief This function initializes the trellis structure for decoding an LTE convolutional code.*/
void ccodelte_init_inv(void);
/*!\fn void ccodelte_init(void)
\brief This function initializes the generator polynomials for an DAB convolutional code (first 3 bits).*/
void ccodedab_init(void);
/*!\fn void ccodelte_init_inv(void)
\brief This function initializes the trellis structure for decoding an DAB convolutional code (first 3 bits).*/
void ccodedab_init_inv(void);
/*!\fn void crcTableInit(void)
\brief This function initializes the different crc tables.*/
//void crcTableInit (void);
/*!\fn uint32_t crc24a(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 24-bit crc ('a' variant for overall transport block)
based on 3GPP UMTS/LTE specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits
*/
uint32_t crc24a (uint8_t * inptr, uint32_t bitlen);
/*!\fn uint32_t crc24b(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 24-bit crc ('b' variant for transport-block segments)
based on 3GPP UMTS/LTE specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits
*/
uint32_t crc24b (uint8_t * inptr, uint32_t bitlen);
/*!\fn uint32_t crc16(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 16-bit crc based on 3GPP UMTS specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits*/
uint32_t crc16 (uint8_t * inptr, uint32_t bitlen);
/*!\fn uint32_t crc12(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 12-bit crc based on 3GPP UMTS specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits*/
uint32_t crc12 (uint8_t * inptr, uint32_t bitlen);
/*!\fn uint32_t crc8(uint8_t *inPtr, int32_t bitlen)
\brief This computes a 8-bit crc based on 3GPP UMTS specifications.
@param inPtr Pointer to input byte stream
@param bitlen length of inputs in bits*/
uint32_t crc8 (uint8_t * inptr, uint32_t bitlen);
/*!\fn void phy_viterbi_dot11_sse2(int8_t *y, uint8_t *decoded_bytes, uint16_t n,int offset,int traceback)
\brief This routine performs a SIMD optmized Viterbi decoder for the 802.11 64-state convolutional code. It can be
run in segments with final trace back after last segment.
@param y Pointer to soft input (coded on 8-bits but should be limited to 4-bit precision to avoid overflow)
@param decoded_bytes Pointer to decoded output
@param n Length of input/trellis depth in bits for this run
@param offset offset in receive buffer for segment on which to operate
@param traceback flag to indicate that traceback should be performed*/
void phy_viterbi_dot11_sse2(int8_t *y,uint8_t *decoded_bytes,uint16_t n);
/*!\fn void phy_viterbi_lte_sse2(int8_t *y, uint8_t *decoded_bytes, uint16_t n)
\brief This routine performs a SIMD optmized Viterbi decoder for the LTE 64-state tail-biting convolutional code.
@param y Pointer to soft input (coded on 8-bits but should be limited to 4-bit precision to avoid overflow)
@param decoded_bytes Pointer to decoded output
@param n Length of input/trellis depth in bits*/
//void phy_viterbi_lte_sse2(int8_t *y,uint8_t *decoded_bytes,uint16_t n);
void phy_viterbi_lte_sse2(int8_t *y,uint8_t *decoded_bytes,uint16_t n);
/*!\fn void phy_generate_viterbi_tables(void)
\brief This routine initializes metric tables for the optimized Viterbi decoder.
*/
void phy_generate_viterbi_tables( void );
/*!\fn void phy_generate_viterbi_tables_lte(void)
\brief This routine initializes metric tables for the optimized LTE Viterbi decoder.
*/
void phy_generate_viterbi_tables_lte( void );
/*!\fn int32_t rate_matching(uint32_t N_coded,
uint32_t N_input,
uint8_t *inPtr,
uint8_t N_bps,
uint32_t off)
\brief This routine performs random puncturing of a coded sequence.
@param N_coded Number of coding bits to be output
@param N_input Number of input bits
@param *inPtr Pointer to coded input
@param N_bps Number of modulation bits per symbol (1,2,4)
@param off Offset for seed
*/
int32_t rate_matching(uint32_t N_coded,
uint32_t N_input,
uint8_t *inPtr,
uint8_t N_bps,
uint32_t off);
int32_t rate_matching_lte(uint32_t N_coded,
uint32_t N_input,
uint8_t *inPtr,
uint32_t off);
uint32_t crcbit (uint8_t * ,
int32_t,
uint32_t);
int16_t reverseBits(int32_t ,int32_t);
void phy_viterbi_dot11(int8_t *,uint8_t *,uint16_t);
#endif