Newer
Older
/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see <http://www.gnu.org/licenses/>.
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
gauthier
committed
OpenAirInterface Dev : openair4g-devel@lists.eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
* \author: HongliangXU : hong-liang-xu@agilent.com
*/
#include <string.h>
#include <pthread.h>
#include <unistd.h>
#include <stdio.h>
#include <uhd/utils/thread_priority.hpp>
#include <uhd/usrp/multi_usrp.hpp>
#include <uhd/version.hpp>
#include <boost/lexical_cast.hpp>
#include <boost/algorithm/string.hpp>
#include <iostream>
#include <complex>
#include <fstream>
#include <cmath>
knopp
committed
#ifdef __SSE4_1__
# include <smmintrin.h>
#endif
#ifdef __AVX2__
# include <immintrin.h>
#endif
/** @addtogroup _USRP_PHY_RF_INTERFACE_
* @{
*/
/*! \brief USRP Configuration */
typedef struct
{
// --------------------------------
// variables for USRP configuration
// --------------------------------
//! time offset between transmiter timestamp and receiver timestamp;
//! TX forward samples. We use usrp_time_offset to get this value
int tx_forward_nsamps; //166 for 20Mhz
// --------------------------------
// Debug and output control
// --------------------------------
//! Number of sequential errors
/*! \brief Called to start the USRP transceiver. Return 0 if OK, < 0 if error
@param device pointer to the device structure specific to the RF hardware target
*/
static int trx_usrp_start(openair0_device *device)
{
usrp_state_t *s = (usrp_state_t*)device->priv;
// init recv and send streaming
uhd::stream_cmd_t cmd(uhd::stream_cmd_t::STREAM_MODE_START_CONTINUOUS);
cmd.stream_now = false; // start at constant delay
s->rx_stream->issue_stream_cmd(cmd);
s->tx_md.time_spec = cmd.time_spec + uhd::time_spec_t(1-(double)s->tx_forward_nsamps/s->sample_rate);
s->tx_md.has_time_spec = true;
s->tx_md.start_of_burst = true;
s->tx_md.end_of_burst = false;
s->rx_count = 0;
s->tx_count = 0;
s->rx_timestamp = 0;
/*! \brief Terminate operation of the USRP transceiver -- free all associated resources
* \param device the hardware to use
*/
static void trx_usrp_end(openair0_device *device)
{
usrp_state_t *s = (usrp_state_t*)device->priv;
s->rx_stream->issue_stream_cmd(uhd::stream_cmd_t::STREAM_MODE_STOP_CONTINUOUS);
//send a mini EOB packet
s->tx_md.end_of_burst = true;
s->tx_stream->send("", 0, s->tx_md);
s->tx_md.end_of_burst = false;
/*! \brief Called to send samples to the USRP RF target
@param device pointer to the device structure specific to the RF hardware target
@param timestamp The timestamp at whicch the first sample MUST be sent
@param buff Buffer which holds the samples
@param nsamps number of samples to be sent
@param antenna_id index of the antenna if the device has multiple anteannas
@param flags flags must be set to TRUE if timestamp parameter needs to be applied
*/
static int trx_usrp_write(openair0_device *device, openair0_timestamp timestamp, void **buff, int nsamps, int cc, int flags)
{
usrp_state_t *s = (usrp_state_t*)device->priv;
s->tx_md.time_spec = uhd::time_spec_t::from_ticks(timestamp, s->sample_rate);
if(flags)
s->tx_md.has_time_spec = true;
else
s->tx_md.has_time_spec = false;
if (cc>1) {
std::vector<void *> buff_ptrs;
for (int i=0;i<cc;i++) buff_ptrs.push_back(buff[i]);
s->tx_stream->send(buff_ptrs, nsamps, s->tx_md);
}
else
s->tx_stream->send(buff[0], nsamps, s->tx_md);
return 0;
/*! \brief Receive samples from hardware.
* Read \ref nsamps samples from each channel to buffers. buff[0] is the array for
* the first channel. *ptimestamp is the time at which the first sample
* was received.
* \param device the hardware to use
* \param[out] ptimestamp the time at which the first sample was received.
* \param[out] buff An array of pointers to buffers for received samples. The buffers must be large enough to hold the number of samples \ref nsamps.
* \param nsamps Number of samples. One sample is 2 byte I + 2 byte Q => 4 byte.
* \param antenna_id Index of antenna for which to receive samples
* \returns the number of sample read
*/
static int trx_usrp_read(openair0_device *device, openair0_timestamp *ptimestamp, void **buff, int nsamps, int cc)
knopp
committed
usrp_state_t *s = (usrp_state_t*)device->priv;
int samples_received=0,i,j;
int nsamps2; // aligned to upper 32 or 16 byte boundary
#if defined(__x86_64) || defined(__i386__)
#ifdef __AVX2__
__m256i buff_tmp[2][nsamps>>3];
nsamps2 = (nsamps+7)>>3;
#else
__m128i buff_tmp[2][nsamps>>2];
nsamps2 = (nsamps+3)>>2;
#endif
#elif defined(__arm__)
int16x8_t buff_tmp[2][nsamps>>2];
nsamps2 = (nsamps+3)>>2;
#endif
Aikaterini Trilyraki
committed
if (device->type == USRP_B200_DEV) {
for (int i=0;i<cc;i++) buff_ptrs.push_back(buff_tmp[i]);
samples_received = s->rx_stream->recv(buff_ptrs, nsamps, s->rx_md);
} else {
// receive a single channel (e.g. from connector RF A)
samples_received = s->rx_stream->recv(buff_tmp[0], nsamps, s->rx_md);
}
knopp
committed
// bring RX data into 12 LSBs for softmodem RX
for (int i=0;i<cc;i++) {
for (int j=0; j<nsamps2; j++) {
knopp
committed
#if defined(__x86_64__) || defined(__i386__)
#ifdef __AVX2__
((__m256i *)buff[i])[j] = _mm256_srai_epi16(buff_tmp[i][j],4);
knopp
committed
#else
((__m128i *)buff[i])[j] = _mm_srai_epi16(buff_tmp[i][j],4);
knopp
committed
#endif
#elif defined(__arm__)
((int16x8_t*)buff[i])[j] = vshrq_n_s16(buff_tmp[i][j],4);
knopp
committed
#endif
knopp
committed
}
Aikaterini Trilyraki
committed
} else if (device->type == USRP_X300_DEV) {
if (cc>1) {
// receive multiple channels (e.g. RF A and RF B)
std::vector<void *> buff_ptrs;
for (int i=0;i<cc;i++) buff_ptrs.push_back(buff[i]);
samples_received = s->rx_stream->recv(buff_ptrs, nsamps, s->rx_md);
} else {
// receive a single channel (e.g. from connector RF A)
samples_received = s->rx_stream->recv(buff[0], nsamps, s->rx_md);
if (samples_received < nsamps) {
printf("[recv] received %d samples out of %d\n",samples_received,nsamps);
}
//handle the error code
switch(s->rx_md.error_code){
case uhd::rx_metadata_t::ERROR_CODE_NONE:
break;
case uhd::rx_metadata_t::ERROR_CODE_OVERFLOW:
printf("[recv] USRP RX OVERFLOW!\n");
s->num_overflows++;
break;
case uhd::rx_metadata_t::ERROR_CODE_TIMEOUT:
printf("[recv] USRP RX TIMEOUT!\n");
break;
default:
printf("[recv] Unexpected error on RX, Error code: 0x%x\n",s->rx_md.error_code);
break;
}
s->rx_count += nsamps;
s->rx_timestamp = s->rx_md.time_spec.to_ticks(s->sample_rate);
*ptimestamp = s->rx_timestamp;
/*! \brief Get current timestamp of USRP
* \param device the hardware to use
*/
openair0_timestamp get_usrp_time(openair0_device *device)
{
usrp_state_t *s = (usrp_state_t*)device->priv;
return s->usrp->get_time_now().to_ticks(s->sample_rate);
}
/*! \brief Compares two variables within precision
* \param a first variable
* \param b second variable
*/
static bool is_equal(double a, double b)
{
return std::fabs(a-b) < std::numeric_limits<double>::epsilon();
}
/*! \brief Set frequencies (TX/RX)
* \param device the hardware to use
* \param openair0_cfg RF frontend parameters set by application
* \param dummy dummy variable not used
* \returns 0 in success
*/
int trx_usrp_set_freq(openair0_device* device, openair0_config_t *openair0_cfg, int dummy) {
usrp_state_t *s = (usrp_state_t*)device->priv;
s->usrp->set_tx_freq(openair0_cfg[0].tx_freq[0]);
s->usrp->set_rx_freq(openair0_cfg[0].rx_freq[0]);
return(0);
}
/*! \brief Set RX frequencies
* \param device the hardware to use
* \param openair0_cfg RF frontend parameters set by application
* \returns 0 in success
*/
int openair0_set_rx_frequencies(openair0_device* device, openair0_config_t *openair0_cfg) {
usrp_state_t *s = (usrp_state_t*)device->priv;
static int first_call=1;
static double rf_freq,diff;
uhd::tune_request_t rx_tune_req(openair0_cfg[0].rx_freq[0]);
rx_tune_req.rf_freq_policy = uhd::tune_request_t::POLICY_MANUAL;
rx_tune_req.rf_freq = openair0_cfg[0].rx_freq[0];
rf_freq=openair0_cfg[0].rx_freq[0];
s->usrp->set_rx_freq(rx_tune_req);
return(0);
}
/*! \brief Set Gains (TX/RX)
* \param device the hardware to use
* \param openair0_cfg RF frontend parameters set by application
* \returns 0 in success
*/
int trx_usrp_set_gains(openair0_device* device,
openair0_config_t *openair0_cfg) {
usrp_state_t *s = (usrp_state_t*)device->priv;
s->usrp->set_tx_gain(openair0_cfg[0].tx_gain[0]);
::uhd::gain_range_t gain_range = s->usrp->get_rx_gain_range(0);
// limit to maximum gain
if (openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0] > gain_range.stop()) {
printf("RX Gain 0 too high, reduce by %f dB\n",
openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0] - gain_range.stop());
exit(-1);
}
s->usrp->set_rx_gain(openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0]);
printf("Setting USRP RX gain to %f (rx_gain %f,gain_range.stop() %f)\n", openair0_cfg[0].rx_gain[0]-openair0_cfg[0].rx_gain_offset[0],openair0_cfg[0].rx_gain[0],gain_range.stop());
/*! \brief Stop USRP
* \param card refers to the hardware index to use
*/
return(0);
}
/*! \brief USRPB210 RX calibration table */
rx_gain_calib_table_t calib_table_b210[] = {
{3500000000.0,44.0},
{2660000000.0,49.0},
{2300000000.0,50.0},
{1880000000.0,53.0},
{816000000.0,58.0},
{-1,0}};
/*! \brief USRPB210 RX calibration table */
rx_gain_calib_table_t calib_table_b210_38[] = {
{3500000000.0,44.0},
{2660000000.0,49.8},
{2300000000.0,51.0},
{1880000000.0,53.0},
{816000000.0,57.0},
{-1,0}};
/*! \brief USRPx310 RX calibration table */
rx_gain_calib_table_t calib_table_x310[] = {
{3500000000.0,77.0},
{2660000000.0,81.0},
{2300000000.0,81.0},
{1880000000.0,82.0},
{816000000.0,85.0},
{-1,0}};
/*! \brief Set RX gain offset
* \param openair0_cfg RF frontend parameters set by application
* \param chain_index RF chain to apply settings to
* \returns 0 in success
*/
void set_rx_gain_offset(openair0_config_t *openair0_cfg, int chain_index,int bw_gain_adjust) {
int i=0;
// loop through calibration table to find best adjustment factor for RX frequency
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
double min_diff = 6e9,diff,gain_adj=0.0;
if (bw_gain_adjust==1) {
switch ((int)openair0_cfg[0].sample_rate) {
case 30720000:
break;
case 23040000:
gain_adj=1.25;
break;
case 15360000:
gain_adj=3.0;
break;
case 7680000:
gain_adj=6.0;
break;
case 3840000:
gain_adj=9.0;
break;
case 1920000:
gain_adj=12.0;
break;
default:
printf("unknown sampling rate %d\n",(int)openair0_cfg[0].sample_rate);
exit(-1);
break;
}
}
while (openair0_cfg->rx_gain_calib_table[i].freq>0) {
diff = fabs(openair0_cfg->rx_freq[chain_index] - openair0_cfg->rx_gain_calib_table[i].freq);
printf("cal %d: freq %f, offset %f, diff %f\n",
i,
openair0_cfg->rx_gain_calib_table[i].freq,
openair0_cfg->rx_gain_calib_table[i].offset,diff);
if (min_diff > diff) {
min_diff = diff;
openair0_cfg->rx_gain_offset[chain_index] = openair0_cfg->rx_gain_calib_table[i].offset+gain_adj;
}
i++;
}
}
/*! \brief print the USRP statistics
* \param device the hardware to use
* \returns 0 on success
*/
int trx_usrp_get_stats(openair0_device* device) {
return(0);
}
/*! \brief Reset the USRP statistics
* \param device the hardware to use
* \returns 0 on success
*/
int trx_usrp_reset_stats(openair0_device* device) {
return(0);
}
Aikaterini Trilyraki
committed
extern "C" {
/*! \brief Initialize Openair USRP target. It returns 0 if OK
* \param device the hardware to use
* \param openair0_cfg RF frontend parameters set by application
*/
Aikaterini Trilyraki
committed
int device_init(openair0_device* device, openair0_config_t *openair0_cfg) {
Aikaterini Trilyraki
committed
uhd::set_thread_priority_safe(1.0);
usrp_state_t *s = (usrp_state_t*)malloc(sizeof(usrp_state_t));
memset(s, 0, sizeof(usrp_state_t));
// Initialize USRP device
int vers=0,subvers=0,subsubvers=0;
int bw_gain_adjust=0;
sscanf(uhd::get_version_string().c_str(),"%d.%d.%d",&vers,&subvers,&subsubvers);
printf("Checking for USRPs : UHD %s (%d.%d.%d)\n",uhd::get_version_string().c_str(),vers,subvers,subsubvers);
double usrp_master_clock = 184.32e6;
std::string args = "type=x300";
// workaround for an api problem, master clock has to be set with the constructor not via set_master_clock_rate
args += boost::str(boost::format(",master_clock_rate=%f") % usrp_master_clock);
uhd::device_addrs_t device_adds = uhd::device::find(args);
if(device_adds.size() == 0)
{
std::cerr<<"No USRP Device Found. " << std::endl;
free(s);
return -1;
printf("Found USRP X300\n");
s->usrp = uhd::usrp::multi_usrp::make(args);
// s->usrp->set_rx_subdev_spec(rx_subdev);
// s->usrp->set_tx_subdev_spec(tx_subdev);
// lock mboard clocks
s->usrp->set_clock_source("internal");
//Setting device type to USRP X300/X310
Aikaterini Trilyraki
committed
device->type=USRP_X300_DEV;
// this is not working yet, master clock has to be set via constructor
// set master clock rate and sample rate for tx & rx for streaming
//s->usrp->set_master_clock_rate(usrp_master_clock);
openair0_cfg[0].rx_gain_calib_table = calib_table_x310;
Aikaterini Trilyraki
committed
switch ((int)openair0_cfg[0].sample_rate) {
case 30720000:
// from usrp_time_offset
openair0_cfg[0].samples_per_packet = 2048;
openair0_cfg[0].tx_sample_advance = 15;
openair0_cfg[0].tx_bw = 20e6;
openair0_cfg[0].rx_bw = 20e6;
openair0_cfg[0].tx_scheduling_advance = 8*openair0_cfg[0].samples_per_packet;
break;
openair0_cfg[0].samples_per_packet = 2048;
openair0_cfg[0].tx_sample_advance = 45;
openair0_cfg[0].tx_bw = 10e6;
openair0_cfg[0].rx_bw = 10e6;
openair0_cfg[0].tx_scheduling_advance = 5*openair0_cfg[0].samples_per_packet;
break;
openair0_cfg[0].samples_per_packet = 1024;
openair0_cfg[0].tx_sample_advance = 50;
openair0_cfg[0].tx_bw = 5e6;
openair0_cfg[0].rx_bw = 5e6;
openair0_cfg[0].tx_scheduling_advance = 5*openair0_cfg[0].samples_per_packet;
break;
openair0_cfg[0].samples_per_packet = 256;
openair0_cfg[0].tx_sample_advance = 50;
openair0_cfg[0].tx_bw = 1.25e6;
openair0_cfg[0].rx_bw = 1.25e6;
openair0_cfg[0].tx_scheduling_advance = 8*openair0_cfg[0].samples_per_packet;
break;
default:
printf("Error: unknown sampling rate %f\n",openair0_cfg[0].sample_rate);
exit(-1);
break;
}
} else {
printf("Found USRP B200");
args += ",num_recv_frames=256" ;
s->usrp = uhd::usrp::multi_usrp::make(args);
// s->usrp->set_rx_subdev_spec(rx_subdev);
// s->usrp->set_tx_subdev_spec(tx_subdev);
// do not explicitly set the clock to "internal", because this will disable the gpsdo
// // lock mboard clocks
// s->usrp->set_clock_source("internal");
// set master clock rate and sample rate for tx & rx for streaming
Aikaterini Trilyraki
committed
device->type = USRP_B200_DEV;
if ((vers == 3) && (subvers == 9) && (subsubvers>=2)) {
openair0_cfg[0].rx_gain_calib_table = calib_table_b210;
bw_gain_adjust=0;
}
else {
openair0_cfg[0].rx_gain_calib_table = calib_table_b210_38;
bw_gain_adjust=1;
}

Florian Kaltenberger
committed
s->usrp->set_master_clock_rate(30.72e6);
switch ((int)openair0_cfg[0].sample_rate) {
case 30720000:
// from usrp_time_offset
openair0_cfg[0].tx_sample_advance = 115;
openair0_cfg[0].tx_bw = 20e6;
openair0_cfg[0].rx_bw = 20e6;
openair0_cfg[0].tx_scheduling_advance = 11*openair0_cfg[0].samples_per_packet;
break;
Raymond Knopp
committed
case 23040000:
openair0_cfg[0].samples_per_packet = 2048;
openair0_cfg[0].tx_sample_advance = 113;
openair0_cfg[0].tx_bw = 20e6;
openair0_cfg[0].rx_bw = 20e6;
Raymond Knopp
committed
openair0_cfg[0].tx_scheduling_advance = 8*openair0_cfg[0].samples_per_packet;
break;
openair0_cfg[0].samples_per_packet = 2048;
openair0_cfg[0].tx_sample_advance = 113;

Florian Kaltenberger
committed
openair0_cfg[0].tx_bw = 20e6;
openair0_cfg[0].rx_bw = 20e6;
openair0_cfg[0].tx_scheduling_advance = 5*openair0_cfg[0].samples_per_packet;
break;
openair0_cfg[0].samples_per_packet = 1024;
openair0_cfg[0].tx_sample_advance = 70;//103;

Florian Kaltenberger
committed
openair0_cfg[0].tx_bw = 20e6;
openair0_cfg[0].rx_bw = 20e6;
openair0_cfg[0].tx_scheduling_advance = 5*openair0_cfg[0].samples_per_packet;
break;
openair0_cfg[0].samples_per_packet = 256;
openair0_cfg[0].tx_sample_advance = 40;

Florian Kaltenberger
committed
openair0_cfg[0].tx_bw = 20e6;
openair0_cfg[0].rx_bw = 20e6;
openair0_cfg[0].tx_scheduling_advance = 8*openair0_cfg[0].samples_per_packet;
break;
default:
printf("Error: unknown sampling rate %f\n",openair0_cfg[0].sample_rate);
exit(-1);
break;
}
}
Aikaterini Trilyraki
committed
/* device specific */
Aikaterini Trilyraki
committed
openair0_cfg[0].txlaunch_wait = 1;//manage when TX processing is triggered
openair0_cfg[0].txlaunch_wait_slotcount = 1; //manage when TX processing is triggered
openair0_cfg[0].iq_txshift = 4;//shift
openair0_cfg[0].iq_rxrescale = 15;//rescale iqs
Aikaterini Trilyraki
committed
s->usrp->set_rx_bandwidth(openair0_cfg[0].rx_bw,i);
printf("Setting rx freq/gain on channel %lu/%lu : BW %f (readback %f)\n",i,s->usrp->get_rx_num_channels(),openair0_cfg[0].rx_bw/1e6,s->usrp->get_rx_bandwidth(i)/1e6);
set_rx_gain_offset(&openair0_cfg[0],i,bw_gain_adjust);
::uhd::gain_range_t gain_range = s->usrp->get_rx_gain_range(i);
// limit to maximum gain
if (openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i] > gain_range.stop()) {
printf("RX Gain %lu too high, lower by %f dB\n",i,openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i] - gain_range.stop());
exit(-1);
}
s->usrp->set_rx_gain(openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i],i);
printf("RX Gain %lu %f (%f) => %f (max %f)\n",i,
openair0_cfg[0].rx_gain[i],openair0_cfg[0].rx_gain_offset[i],
openair0_cfg[0].rx_gain[i]-openair0_cfg[0].rx_gain_offset[i],gain_range.stop());
s->usrp->set_tx_rate(openair0_cfg[0].sample_rate,i);
s->usrp->set_tx_bandwidth(openair0_cfg[0].tx_bw,i);
printf("Setting tx freq/gain on channel %lu/%lu: BW %f (readback %f)\n",i,s->usrp->get_tx_num_channels(),openair0_cfg[0].tx_bw/1e6,s->usrp->get_tx_bandwidth(i)/1e6);
s->usrp->set_tx_freq(openair0_cfg[0].tx_freq[i],i);
s->usrp->set_tx_gain(openair0_cfg[0].tx_gain[i],i);
// display USRP settings
std::cout << boost::format("Actual master clock: %fMHz...") % (s->usrp->get_master_clock_rate()/1e6) << std::endl;
//stream_args_rx.args["spp"] = str(boost::format("%d") % 2048);//(openair0_cfg[0].rx_num_channels*openair0_cfg[0].samples_per_packet));
stream_args_rx.channels.push_back(i);
s->rx_stream = s->usrp->get_rx_stream(stream_args_rx);
std::cout << boost::format("rx_max_num_samps %u") % (s->rx_stream->get_max_num_samps()) << std::endl;
//openair0_cfg[0].samples_per_packet = s->rx_stream->get_max_num_samps();
uhd::stream_args_t stream_args_tx("sc16", "sc16");
//stream_args_tx.args["spp"] = str(boost::format("%d") % 2048);//(openair0_cfg[0].tx_num_channels*openair0_cfg[0].samples_per_packet));
stream_args_tx.channels.push_back(i);
s->tx_stream = s->usrp->get_tx_stream(stream_args_tx);
std::cout << boost::format("tx_max_num_samps %u") % (s->tx_stream->get_max_num_samps()) << std::endl;
Aikaterini Trilyraki
committed
for (i=0;i<openair0_cfg[0].rx_num_channels;i++) {
if (i<openair0_cfg[0].rx_num_channels) {
std::cout << boost::format("Actual RX sample rate: %fMSps...") % (s->usrp->get_rx_rate(i)/1e6) << std::endl;
std::cout << boost::format("Actual RX frequency: %fGHz...") % (s->usrp->get_rx_freq(i)/1e9) << std::endl;
std::cout << boost::format("Actual RX gain: %f...") % (s->usrp->get_rx_gain(i)) << std::endl;
std::cout << boost::format("Actual RX bandwidth: %fM...") % (s->usrp->get_rx_bandwidth(i)/1e6) << std::endl;
std::cout << boost::format("Actual RX antenna: %s...") % (s->usrp->get_rx_antenna(i)) << std::endl;
}
}
for (i=0;i<openair0_cfg[0].tx_num_channels;i++) {
if (i<openair0_cfg[0].tx_num_channels) {
std::cout << std::endl<<boost::format("Actual TX sample rate: %fMSps...") % (s->usrp->get_tx_rate(i)/1e6) << std::endl;
std::cout << boost::format("Actual TX frequency: %fGHz...") % (s->usrp->get_tx_freq(i)/1e9) << std::endl;
std::cout << boost::format("Actual TX gain: %f...") % (s->usrp->get_tx_gain(i)) << std::endl;
std::cout << boost::format("Actual TX bandwidth: %fM...") % (s->usrp->get_tx_bandwidth(i)/1e6) << std::endl;
std::cout << boost::format("Actual TX antenna: %s...") % (s->usrp->get_tx_antenna(i)) << std::endl;
}
}
std::cout << boost::format("Device timestamp: %f...") % (s->usrp->get_time_now().get_real_secs()) << std::endl;
device->priv = s;
device->trx_start_func = trx_usrp_start;
device->trx_write_func = trx_usrp_write;
device->trx_read_func = trx_usrp_read;
device->trx_get_stats_func = trx_usrp_get_stats;
device->trx_reset_stats_func = trx_usrp_reset_stats;
device->trx_end_func = trx_usrp_end;
device->trx_stop_func = trx_usrp_stop;
device->trx_set_freq_func = trx_usrp_set_freq;
device->trx_set_gains_func = trx_usrp_set_gains;
s->sample_rate = openair0_cfg[0].sample_rate;
// TODO:
// init tx_forward_nsamps based usrp_time_offset ex
if(is_equal(s->sample_rate, (double)30.72e6))
s->tx_forward_nsamps = 176;
if(is_equal(s->sample_rate, (double)15.36e6))
s->tx_forward_nsamps = 90;
if(is_equal(s->sample_rate, (double)7.68e6))
s->tx_forward_nsamps = 50;
return 0;