Newer
Older
* Copyright (c) 2003, 2004, 2005, 2006, 2007 Lev Walkin <vlm@lionet.info>.
* Redistribution and modifications are permitted subject to BSD license.
*/
#include <asn_codecs_prim.h> /* Encoder and decoder of a primitive type */
#include <errno.h>
/*
* INTEGER basic type description.
*/
ASN__PRIMITIVE_TYPE_free,
ber_decode_primitive,
INTEGER_decode_uper, /* Unaligned PER decoder */
asn_DEF_INTEGER_tags,
sizeof(asn_DEF_INTEGER_tags) / sizeof(asn_DEF_INTEGER_tags[0]),
asn_DEF_INTEGER_tags, /* Same as above */
sizeof(asn_DEF_INTEGER_tags) / sizeof(asn_DEF_INTEGER_tags[0]),
INTEGER_encode_der(asn_TYPE_descriptor_t *td, void *sptr,
int tag_mode, ber_tlv_tag_t tag,
asn_app_consume_bytes_f *cb, void *app_key) {
INTEGER_t *st = (INTEGER_t *)sptr;
cb?"Encoding":"Estimating", td->name, tag_mode);
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
/*
* Canonicalize integer in the buffer.
* (Remove too long sign extension, remove some first 0x00 bytes)
*/
if(st->buf) {
uint8_t *buf = st->buf;
uint8_t *end1 = buf + st->size - 1;
int shift;
/* Compute the number of superfluous leading bytes */
for(; buf < end1; buf++) {
/*
* If the contents octets of an integer value encoding
* consist of more than one octet, then the bits of the
* first octet and bit 8 of the second octet:
* a) shall not all be ones; and
* b) shall not all be zero.
*/
switch(*buf) {
case 0x00: if((buf[1] & 0x80) == 0)
continue;
break;
case 0xff: if((buf[1] & 0x80))
continue;
break;
}
break;
}
/* Remove leading superfluous bytes from the integer */
shift = buf - st->buf;
if(shift) {
uint8_t *nb = st->buf;
uint8_t *end;
st->size -= shift; /* New size, minus bad bytes */
end = nb + st->size;
for(; nb < end; nb++, buf++)
*nb = *buf;
}
} /* if(1) */
return der_encode_primitive(td, sptr, tag_mode, tag, cb, app_key);
static const asn_INTEGER_enum_map_t *INTEGER_map_enum2value(asn_INTEGER_specifics_t *specs, const char *lstart, const char *lstop);
INTEGER__dump(asn_TYPE_descriptor_t *td, const INTEGER_t *st, asn_app_consume_bytes_f *cb, void *app_key, int plainOrXER) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
char scratch[32]; /* Enough for 64-bit integer */
uint8_t *buf = st->buf;
uint8_t *buf_end = st->buf + st->size;
signed long accum;
/*
* Advance buf pointer until the start of the value's body.
* This will make us able to process large integers using simple case,
* when the actual value is small
* (0x0000000000abcdef would yield a fine 0x00abcdef)
*/
/* Skip the insignificant leading bytes */
for(; buf < buf_end-1; buf++) {
switch(*buf) {
case 0x00: if((buf[1] & 0x80) == 0) continue; break;
case 0xff: if((buf[1] & 0x80) != 0) continue; break;
}
break;
}
const asn_INTEGER_enum_map_t *el;
size_t scrsize;
char *scr;
if(buf == buf_end) {
accum = 0;
} else {
accum = (*buf & 0x80) ? -1 : 0;
for(; buf < buf_end; buf++)
accum = (accum << 8) | *buf;
}
el = INTEGER_map_value2enum(specs, accum);
if(el) {
scrsize = el->enum_len + 32;
scr = (char *)alloca(scrsize);
if(plainOrXER == 0)
ret = snprintf(scr, scrsize,
"%ld (%s)", accum, el->enum_name);
else
ret = snprintf(scr, scrsize,
"<%s/>", el->enum_name);
} else if(plainOrXER && specs && specs->strict_enumeration) {
ASN_DEBUG("ASN.1 forbids dealing with "
"unknown value of ENUMERATED type");
errno = EPERM;
return -1;
} else {
scrsize = sizeof(scratch);
scr = scratch;
ret = snprintf(scr, scrsize,
(specs && specs->field_unsigned)
?"%lu":"%ld", accum);
}
assert(ret > 0 && (size_t)ret < scrsize);
return (cb(scr, ret, app_key) < 0) ? -1 : ret;
} else if(plainOrXER && specs && specs->strict_enumeration) {
/*
* Here and earlier, we cannot encode the ENUMERATED values
* if there is no corresponding identifier.
*/
ASN_DEBUG("ASN.1 forbids dealing with "
"unknown value of ENUMERATED type");
errno = EPERM;
return -1;
/* TODO: replace with generic algorithm (Knuth TAOCP Vol 2, 4.3.1) */
if((p - scratch) >= (ssize_t)(sizeof(scratch) - 4)) {
p = scratch;
}
*p++ = h2c[*buf >> 4];
*p++ = h2c[*buf & 0x0F];
wrote += p - scratch;
return (cb(scratch, p - scratch, app_key) < 0) ? -1 : wrote;
}
/*
* INTEGER specific human-readable output.
*/
int
INTEGER_print(asn_TYPE_descriptor_t *td, const void *sptr, int ilevel,
asn_app_consume_bytes_f *cb, void *app_key) {
const INTEGER_t *st = (const INTEGER_t *)sptr;
ret = cb("<absent>", 8, app_key);
else
return (ret < 0) ? -1 : 0;
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
struct e2v_key {
const char *start;
const char *stop;
asn_INTEGER_enum_map_t *vemap;
unsigned int *evmap;
};
static int
INTEGER__compar_enum2value(const void *kp, const void *am) {
const struct e2v_key *key = (const struct e2v_key *)kp;
const asn_INTEGER_enum_map_t *el = (const asn_INTEGER_enum_map_t *)am;
const char *ptr, *end, *name;
/* Remap the element (sort by different criterion) */
el = key->vemap + key->evmap[el - key->vemap];
/* Compare strings */
for(ptr = key->start, end = key->stop, name = el->enum_name;
ptr < end; ptr++, name++) {
if(*ptr != *name)
return *(const unsigned char *)ptr
- *(const unsigned char *)name;
}
return name[0] ? -1 : 0;
}
static const asn_INTEGER_enum_map_t *
INTEGER_map_enum2value(asn_INTEGER_specifics_t *specs, const char *lstart, const char *lstop) {
asn_INTEGER_enum_map_t *el_found;
int count = specs ? specs->map_count : 0;
struct e2v_key key;
const char *lp;
if(!count) return NULL;
/* Guaranteed: assert(lstart < lstop); */
/* Figure out the tag name */
for(lstart++, lp = lstart; lp < lstop; lp++) {
switch(*lp) {
case 9: case 10: case 11: case 12: case 13: case 32: /* WSP */
case 0x2f: /* '/' */ case 0x3e: /* '>' */
break;
default:
continue;
}
break;
}
if(lp == lstop) return NULL; /* No tag found */
lstop = lp;
key.start = lstart;
key.stop = lstop;
key.vemap = specs->value2enum;
key.evmap = specs->enum2value;
el_found = (asn_INTEGER_enum_map_t *)bsearch(&key,
specs->value2enum, count, sizeof(specs->value2enum[0]),
INTEGER__compar_enum2value);
if(el_found) {
/* Remap enum2value into value2enum */
el_found = key.vemap + key.evmap[el_found - key.vemap];
}
return el_found;
}
static int
INTEGER__compar_value2enum(const void *kp, const void *am) {
long a = *(const long *)kp;
const asn_INTEGER_enum_map_t *el = (const asn_INTEGER_enum_map_t *)am;
long b = el->nat_value;
if(a < b) return -1;
else if(a == b) return 0;
else return 1;
}
const asn_INTEGER_enum_map_t *
INTEGER_map_value2enum(asn_INTEGER_specifics_t *specs, long value) {
int count = specs ? specs->map_count : 0;
if(!count) return 0;
return (asn_INTEGER_enum_map_t *)bsearch(&value, specs->value2enum,
count, sizeof(specs->value2enum[0]),
INTEGER__compar_value2enum);
}
static int
INTEGER_st_prealloc(INTEGER_t *st, int min_size) {
void *p = MALLOC(min_size + 1);
if(p) {
void *b = st->buf;
st->size = 0;
st->buf = p;
FREEMEM(b);
return 0;
} else {
return -1;
}
}
/*
* Decode the chunk of XML text encoding INTEGER.
*/
static enum xer_pbd_rval
INTEGER__xer_body_decode(asn_TYPE_descriptor_t *td, void *sptr, const void *chunk_buf, size_t chunk_size) {
const char *lp;
const char *lstart = (const char *)chunk_buf;
const char *lstop = lstart + chunk_size;
ST_HEXDIGIT1,
ST_HEXDIGIT2,
ST_HEXCOLON,
ASN_DEBUG("INTEGER body %ld 0x%2x..0x%2x",
(long)chunk_size, *lstart, lstop[-1]);
* We may have received a tag here. It will be processed inline.
* Use strtoul()-like code and serialize the result.
for(value = 0, lp = lstart; lp < lstop; lp++) {
int lv = *lp;
switch(lv) {
case 0x09: case 0x0a: case 0x0d: case 0x20:
switch(state) {
case ST_SKIPSPACE:
case ST_SKIPSPHEX:
continue;
case ST_HEXCOLON:
if(xer_is_whitespace(lp, lstop - lp)) {
lp = lstop - 1;
continue;
}
break;
default:
break;
}
break;
case 0x2d: /* '-' */
if(state == ST_SKIPSPACE) {
sign = -1;
state = ST_WAITDIGITS;
continue;
}
break;
case 0x2b: /* '+' */
if(state == ST_SKIPSPACE) {
state = ST_WAITDIGITS;
continue;
}
break;
case 0x30: case 0x31: case 0x32: case 0x33: case 0x34:
case 0x35: case 0x36: case 0x37: case 0x38: case 0x39:
switch(state) {
case ST_DIGITS: break;
case ST_SKIPSPHEX: /* Fall through */
case ST_HEXDIGIT1:
value = (lv - 0x30) << 4;
state = ST_HEXDIGIT2;
continue;
case ST_HEXDIGIT2:
value += (lv - 0x30);
state = ST_HEXCOLON;
continue;
case ST_HEXCOLON:
return XPBD_BROKEN_ENCODING;
default:
state = ST_DIGITS;
break;
}
{
long new_value = value * 10;
if(new_value / 10 != value)
/* Overflow */
/* Check for two's complement overflow */
if(value < 0) {
/* Check whether it is a LONG_MIN */
if(sign == -1
case 0x3c: /* '<' */
if(state == ST_SKIPSPACE) {
const asn_INTEGER_enum_map_t *el;
(asn_INTEGER_specifics_t *)
td->specifics, lstart, lstop);
if(el) {
ASN_DEBUG("Found \"%s\" => %ld",
el->enum_name, el->nat_value);
state = ST_DIGITS;
value = el->nat_value;
}
ASN_DEBUG("Unknown identifier for INTEGER");
}
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
case 0x3a: /* ':' */
if(state == ST_HEXCOLON) {
/* This colon is expected */
state = ST_HEXDIGIT1;
continue;
} else if(state == ST_DIGITS) {
/* The colon here means that we have
* decoded the first two hexadecimal
* places as a decimal value.
* Switch decoding mode. */
ASN_DEBUG("INTEGER re-evaluate as hex form");
if(INTEGER_st_prealloc(st, (chunk_size/3) + 1))
return XPBD_SYSTEM_FAILURE;
state = ST_SKIPSPHEX;
lp = lstart - 1;
continue;
} else {
ASN_DEBUG("state %d at %d", state, lp - lstart);
break;
}
/* [A-Fa-f] */
case 0x41:case 0x42:case 0x43:case 0x44:case 0x45:case 0x46:
case 0x61:case 0x62:case 0x63:case 0x64:case 0x65:case 0x66:
switch(state) {
case ST_SKIPSPHEX:
case ST_SKIPSPACE: /* Fall through */
case ST_HEXDIGIT1:
value = lv - ((lv < 0x61) ? 0x41 : 0x61);
value += 10;
value <<= 4;
state = ST_HEXDIGIT2;
continue;
case ST_HEXDIGIT2:
value += lv - ((lv < 0x61) ? 0x41 : 0x61);
value += 10;
state = ST_HEXCOLON;
continue;
case ST_DIGITS:
ASN_DEBUG("INTEGER re-evaluate as hex form");
if(INTEGER_st_prealloc(st, (chunk_size/3) + 1))
return XPBD_SYSTEM_FAILURE;
state = ST_SKIPSPHEX;
lp = lstart - 1;
continue;
default:
break;
}
break;
/* Found extra non-numeric stuff */
ASN_DEBUG("Found non-numeric 0x%2x at %d",
lv, lp - lstart);
switch(state) {
case ST_DIGITS:
/* Everything is cool */
break;
case ST_HEXCOLON:
st->buf[st->size] = 0; /* Just in case termination */
return XPBD_BODY_CONSUMED;
case ST_HEXDIGIT1:
case ST_HEXDIGIT2:
case ST_SKIPSPHEX:
return XPBD_BROKEN_ENCODING;
default:
if(xer_is_whitespace(lp, lstop - lp)) {
if(state != ST_EXTRASTUFF)
return XPBD_NOT_BODY_IGNORE;
ASN_DEBUG("INTEGER: No useful digits (state %d)",
state);
return XPBD_BROKEN_ENCODING; /* No digits */
}
value *= sign; /* Change sign, if needed */
if(asn_long2INTEGER(st, value))
}
asn_dec_rval_t
INTEGER_decode_xer(asn_codec_ctx_t *opt_codec_ctx,
asn_TYPE_descriptor_t *td, void **sptr, const char *opt_mname,
return xer_decode_primitive(opt_codec_ctx, td,
buf_ptr, size, INTEGER__xer_body_decode);
}
INTEGER_encode_xer(asn_TYPE_descriptor_t *td, void *sptr,
int ilevel, enum xer_encoder_flags_e flags,
asn_app_consume_bytes_f *cb, void *app_key) {
const INTEGER_t *st = (const INTEGER_t *)sptr;
asn_enc_rval_t er;
(void)ilevel;
(void)flags;
_ASN_ENCODED_OK(er);
}
asn_dec_rval_t
INTEGER_decode_uper(asn_codec_ctx_t *opt_codec_ctx, asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void **sptr, asn_per_data_t *pd) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_dec_rval_t rval = { RC_OK, 0 };
INTEGER_t *st = (INTEGER_t *)*sptr;
asn_per_constraint_t *ct;
int repeat;
(void)opt_codec_ctx;
if(!st) {
st = (INTEGER_t *)(*sptr = CALLOC(1, sizeof(*st)));
if(!st) _ASN_DECODE_FAILED;
}
if(!constraints) constraints = td->per_constraints;
ct = constraints ? &constraints->value : 0;
if(ct && ct->flags & APC_EXTENSIBLE) {
int inext = per_get_few_bits(pd, 1);
if(inext) ct = 0;
}
FREEMEM(st->buf);
if(ct) {
if(ct->flags & APC_SEMI_CONSTRAINED) {
st->buf = (uint8_t *)CALLOC(1, 2);
if(!st->buf) _ASN_DECODE_FAILED;
st->size = 1;
} else if(ct->flags & APC_CONSTRAINED && ct->range_bits >= 0) {
size_t size = (ct->range_bits + 7) >> 3;
st->buf = (uint8_t *)MALLOC(1 + size + 1);
if(!st->buf) _ASN_DECODE_FAILED;
st->size = size;
}
}
/* X.691, #12.2.2 */
if(ct && ct->flags != APC_UNCONSTRAINED) {
/* #10.5.6 */
ASN_DEBUG("Integer with range %d bits", ct->range_bits);
if(ct->range_bits >= 0) {
long value;
if(ct->range_bits == 32) {
long lhalf;
value = per_get_few_bits(pd, 16);
if(value < 0) _ASN_DECODE_STARVED;
lhalf = per_get_few_bits(pd, 16);
if(lhalf < 0) _ASN_DECODE_STARVED;
value = (value << 16) | lhalf;
} else {
value = per_get_few_bits(pd, ct->range_bits);
if(value < 0) _ASN_DECODE_STARVED;
}
ASN_DEBUG("Got value %ld + low %ld",
value, ct->lower_bound);
value += ct->lower_bound;
if((specs && specs->field_unsigned)
? asn_ulong2INTEGER(st, value)
: asn_long2INTEGER(st, value))
_ASN_DECODE_FAILED;
return rval;
}
} else {
ASN_DEBUG("Decoding unconstrained integer %s", td->name);
}
/* X.691, #12.2.3, #12.2.4 */
do {
ssize_t len;
void *p;
int ret;
/* Get the PER length */
len = uper_get_length(pd, -1, &repeat);
p = REALLOC(st->buf, st->size + len + 1);
if(!p) _ASN_DECODE_FAILED;
st->buf = (uint8_t *)p;
ret = per_get_many_bits(pd, &st->buf[st->size], 0, 8 * len);
st->size += len;
} while(repeat);
st->buf[st->size] = 0; /* JIC */
/* #12.2.3 */
if(ct && ct->lower_bound) {
/*
* TODO: replace by in-place arithmetics.
*/
long value;
if(asn_INTEGER2long(st, &value))
_ASN_DECODE_FAILED;
if(asn_long2INTEGER(st, value + ct->lower_bound))
_ASN_DECODE_FAILED;
}
return rval;
asn_enc_rval_t
INTEGER_encode_uper(asn_TYPE_descriptor_t *td,
asn_per_constraints_t *constraints, void *sptr, asn_per_outp_t *po) {
asn_INTEGER_specifics_t *specs=(asn_INTEGER_specifics_t *)td->specifics;
asn_enc_rval_t er;
INTEGER_t *st = (INTEGER_t *)sptr;
const uint8_t *buf;
const uint8_t *end;
asn_per_constraint_t *ct;
long value = 0;
if(!st || st->size == 0) _ASN_ENCODE_FAILED;
if(!constraints) constraints = td->per_constraints;
ct = constraints ? &constraints->value : 0;
er.encoded = 0;
if(ct) {
int inext = 0;
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
if(specs && specs->field_unsigned) {
unsigned long uval;
if(asn_INTEGER2ulong(st, &uval))
_ASN_ENCODE_FAILED;
/* Check proper range */
if(ct->flags & APC_SEMI_CONSTRAINED) {
if(uval < (unsigned long)ct->lower_bound)
inext = 1;
} else if(ct->range_bits >= 0) {
if(uval < (unsigned long)ct->lower_bound
|| uval > (unsigned long)ct->upper_bound)
inext = 1;
}
ASN_DEBUG("Value %lu (%02x/%d) lb %lu ub %lu %s",
uval, st->buf[0], st->size,
ct->lower_bound, ct->upper_bound,
inext ? "ext" : "fix");
value = uval;
} else {
if(asn_INTEGER2long(st, &value))
_ASN_ENCODE_FAILED;
/* Check proper range */
if(ct->flags & APC_SEMI_CONSTRAINED) {
if(value < ct->lower_bound)
inext = 1;
} else if(ct->range_bits >= 0) {
if(value < ct->lower_bound
|| value > ct->upper_bound)
inext = 1;
}
ASN_DEBUG("Value %ld (%02x/%d) lb %ld ub %ld %s",
value, st->buf[0], st->size,
ct->lower_bound, ct->upper_bound,
inext ? "ext" : "fix");
}
if(ct->flags & APC_EXTENSIBLE) {
if(per_put_few_bits(po, inext, 1))
_ASN_ENCODE_FAILED;
if(inext) ct = 0;
} else if(inext) {
_ASN_ENCODE_FAILED;
}
}
/* X.691, #12.2.2 */
if(ct && ct->range_bits >= 0) {
/* #10.5.6 */
ASN_DEBUG("Encoding integer with range %d bits",
ct->range_bits);
if(ct->range_bits == 32) {
/* TODO: extend to >32 bits */
long v = value - ct->lower_bound;
if(per_put_few_bits(po, v >> 1, 31)
|| per_put_few_bits(po, v, 1))
_ASN_ENCODE_FAILED;
} else {
if(per_put_few_bits(po, value - ct->lower_bound,
_ASN_ENCODED_OK(er);
}
if(ct && ct->lower_bound) {
ASN_DEBUG("Adjust lower bound to %ld", ct->lower_bound);
/* TODO: adjust lower bound */
_ASN_ENCODE_FAILED;
}
for(buf = st->buf, end = st->buf + st->size; buf < end;) {
ssize_t mayEncode = uper_put_length(po, end - buf);
if(mayEncode < 0)
_ASN_ENCODE_FAILED;
if(per_put_many_bits(po, buf, 8 * mayEncode))
_ASN_ENCODE_FAILED;
asn_INTEGER2long(const INTEGER_t *iptr, long *lptr) {
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
uint8_t *b, *end;
size_t size;
long l;
/* Sanity checking */
if(!iptr || !iptr->buf || !lptr) {
errno = EINVAL;
return -1;
}
/* Cache the begin/end of the buffer */
b = iptr->buf; /* Start of the INTEGER buffer */
size = iptr->size;
end = b + size; /* Where to stop */
if(size > sizeof(long)) {
uint8_t *end1 = end - 1;
/*
* Slightly more advanced processing,
* able to >sizeof(long) bytes,
* when the actual value is small
* (0x0000000000abcdef would yield a fine 0x00abcdef)
*/
/* Skip out the insignificant leading bytes */
for(; b < end1; b++) {
switch(*b) {
case 0x00: if((b[1] & 0x80) == 0) continue; break;
case 0xff: if((b[1] & 0x80) != 0) continue; break;
}
break;
}
size = end - b;
if(size > sizeof(long)) {
/* Still cannot fit the long */
errno = ERANGE;
return -1;
}
}
/* Shortcut processing of a corner case */
if(end == b) {
*lptr = 0;
return 0;
}
/* Perform the sign initialization */
/* Actually l = -(*b >> 7); gains nothing, yet unreadable! */
if((*b >> 7)) l = -1; else l = 0;
/* Conversion engine */
for(; b < end; b++)
l = (l << 8) | *b;
*lptr = l;
return 0;
}
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
int
asn_INTEGER2ulong(const INTEGER_t *iptr, unsigned long *lptr) {
uint8_t *b, *end;
unsigned long l;
size_t size;
if(!iptr || !iptr->buf || !lptr) {
errno = EINVAL;
return -1;
}
b = iptr->buf;
size = iptr->size;
end = b + size;
/* If all extra leading bytes are zeroes, ignore them */
for(; size > sizeof(unsigned long); b++, size--) {
if(*b) {
/* Value won't fit unsigned long */
errno = ERANGE;
return -1;
}
}
/* Conversion engine */
for(l = 0; b < end; b++)
l = (l << 8) | *b;
*lptr = l;
return 0;
}
int
asn_ulong2INTEGER(INTEGER_t *st, unsigned long value) {
uint8_t *buf;
uint8_t *end;
uint8_t *b;
int shr;
if(value <= LONG_MAX)
return asn_long2INTEGER(st, value);
buf = (uint8_t *)MALLOC(1 + sizeof(value));
if(!buf) return -1;
end = buf + (sizeof(value) + 1);
buf[0] = 0;
for(b = buf + 1, shr = (sizeof(long)-1)*8; b < end; shr -= 8, b++)
*b = (uint8_t)(value >> shr);
if(st->buf) FREEMEM(st->buf);
st->buf = buf;
st->size = 1 + sizeof(value);
return 0;
}
int
asn_long2INTEGER(INTEGER_t *st, long value) {
uint8_t *buf, *bp;
uint8_t *p;
uint8_t *pstart;
uint8_t *pend1;
if(!st) {
errno = EINVAL;
return -1;
}
if(*(char *)&littleEndian) {
pstart = (uint8_t *)&value + sizeof(value) - 1;
pend1 = (uint8_t *)&value;
add = -1;
} else {
pstart = (uint8_t *)&value;
pend1 = pstart + sizeof(value) - 1;
add = 1;
}
/*
* If the contents octet consists of more than one octet,
* then bits of the first octet and bit 8 of the second octet:
* a) shall not all be ones; and
* b) shall not all be zero.
*/
continue;
break;
}
break;
}
/* Copy the integer body */
for(pstart = p, bp = buf, pend1 += add; p != pend1; p += add)
*bp++ = *p;
if(st->buf) FREEMEM(st->buf);
st->buf = buf;