-
Raphael Defosseux authored
Signed-off-by:
Raphael Defosseux <raphael.defosseux@eurecom.fr>
Raphael Defosseux authoredSigned-off-by:
Raphael Defosseux <raphael.defosseux@eurecom.fr>
- OpenAirInterface Block diagram
- OpenAirInterface eNB Feature Set
- eNB PHY Layer
- Performances
- Number of supported UEs
- eNB MAC Layer
- eNB RLC Layer
- eNB PDCP Layer
- eNB RRC Layer
- eNB X2AP
- eNB/MCE M2AP
- MCE/MME M3AP
- eNB Advanced Features
- OpenAirInterface UE Feature Set
- LTE UE PHY Layer
- LTE UE MAC Layer
- LTE UE RLC Layer
- LTE UE PDCP Layer
- LTE UE RRC Layer
- LTE UE NAS Layer
- OpenAirInterface Functional Split
- OpenAirInterface 5G-NR Feature Set
- General Parameters
- gNB Features
- gNB PHY Layer
- gNB higher Layers
- NR UE Features
- NR UE PHY Layer
- NR UE higher Layers
Table of Contents
- OpenAirInterface eNB Feature Set
- OpenAirInterface Functional Split
- OpenAirInterface UE Feature Set
- OpenAirInterface Functional Split
- OpenAirInterface 5G-NR Feature Set
OpenAirInterface Block diagram
OpenAirInterface eNB Feature Set
eNB PHY Layer
The Physical layer implements 3GPP 36.211, 36.212, 36.213 and provides the following features:
- LTE release 8.6 compliant, and implements a subset of release 10
- FDD and TDD configurations: 1 (experimental) and 3
- Bandwidth: 5, 10, and 20 MHz
- Transmission modes: 1, 2 (stable), 3, 4, 5, 6, 7 (experimental)
- Max number of antennas: 2
- CQI/PMI reporting: aperiodic, feedback mode 3 - 0 and 3 - 1
- PRACH preamble format 0
- Downlink (DL) channels are supported: PSS, SSS, PBCH, PCFICH, PHICH, PDCCH, PDSCH, PMCH, MPDCCH
- Uplink (UL) channels are supported: PRACH, PUSCH, PUCCH (format 1/1a/1b), SRS, DRS
- HARQ support (UL and DL)
- Highly optimized base band processing (including turbo decoder)
- Multi-RRU support: over the air synchro b/ multi RRU in TDD mode
- Support for CE-modeA for LTE-M. Limited support for repeatition, single-LTE-M connection, legacy-LTE UE attach is disabled.
Performances
Transmission Mode, Bandwidth | Expected Throughput | Measured Throughput | Measurement Conditions |
---|---|---|---|
FDD DL: 5 MHz, 25 PRBS/ MCS 28 | 16 - 17 Mbit/s | TM1: 17.0 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
FDD DL: 10 MHz, 50 PRBS/ MCS 28 | 34 - 35 Mbit/s | TM1: 34.0 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
FDD DL: 20 MHz, 100 PRBS/ MCS 28 | 70 Mbit/s | TM1: 69.9 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
FDD UL: 5 MHz, 25 PRBS/ MCS 20 | 9 Mbit/s | TM1: 8.28 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
FDD UL: 10 MHz, 50 PRBS/ MCS 20 | 17 Mbit/s | TM1: 18.3 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
FDD UL: 20 MHz, 100 PRBS/ MCS 20 | 35 Mbit/s | TM1: 18.6 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
TDD DL: 5 MHz, 25 PRBS/ MCS XX | 6.5 Mbit/s | TM1: 6.71 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
TDD DL: 10 MHz, 50 PRBS/ MCS XX | 13.5 Mbit/s | TM1: 13.6 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
TDD DL: 20 MHz, 100 PRBS/ MCS XX | 28.0 Mbit/s | TM1: 27.2 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
TDD UL: 5 MHz, 25 PRBS/ MCS XX | 2.0 Mbit/s | TM1: 3.31 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
TDD UL: 10 MHz, 50 PRBS/ MCS XX | 2.0 Mbit/s | TM1: 7.25 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
TDD UL: 20 MHz, 100 PRBS/ MCS XX | 3.0 Mbit/s | TM1: 4.21 Mbits/s | COTS-UE Cat 4 (150/50 Mbps) |
Number of supported UEs
- 16 by default
- up to 256 when compiling with dedicated compile flag
- was tested with 40 COTS-UE
eNB MAC Layer
The MAC layer implements a subset of the 3GPP 36.321 release v8.6 in support of BCH, DLSCH, RACH, and ULSCH channels.
- RRC interface for CCCH, DCCH, and DTCH
- Proportional fair scheduler (round robin scheduler soon)
- DCI generation
- HARQ Support
- RA procedures and RNTI management
- RLC interface (AM, UM)
- UL power control
- Link adaptation
- Connected DRX (CDRX) support for FDD LTE UE. Compatible with R13 from 3GPP. Support for Cat-M1 UE comming soon.
eNB RLC Layer
The RLC layer implements a full specification of the 3GPP 36.322 release v9.3.
- RLC TM (mainly used for BCCH and CCCH)
- Neither segment nor concatenate RLC SDUs
- Do not include a RLC header in the RLC PDU
- Delivery of received RLC PDUs to upper layers
- RLC UM (mainly used for DTCH)
- Segment or concatenate RLC SDUs according to the TB size selected by MAC
- Include a RLC header in the RLC PDU
- Duplication detection
- PDU reordering and reassembly
- RLC AM, compatible with 9.3
- Segmentation, re-segmentation, concatenation, and reassembly
- Padding
- Data transfer to the user
- RLC PDU retransmission in support of error control and correction
- Generation of data/control PDUs
eNB PDCP Layer
The current PDCP layer is header compliant with 3GPP 36.323 Rel 10.1.0 and implements the following functions:
- User and control data transfer
- Sequence number management
- RB association with PDCP entity
- PDCP entity association with one or two RLC entities
- Integrity check and encryption using the AES and Snow3G algorithms
eNB RRC Layer
The RRC layer is based on 3GPP 36.331 v14.3.0 and implements the following functions:
- System Information broadcast (SIB 1, 2, 3, and 13)
- SIB1: Up to 6 PLMN IDs broadcast
- RRC connection establishment
- RRC connection reconfiguration (addition and removal of radio bearers, connection release)
- RRC connection release
- RRC connection re-establishment
- Inter-frequency measurement collection and reporting (experimental)
- eMBMS for multicast and broadcast (experimental)
- Handover (experimental)
- Paging (soon)
- RRC inactivity timer (release of UE after a period of data inactivity)
eNB X2AP
The X2AP layer is based on 3GPP 36.423 v14.6.0 and implements the following functions:
- X2 Setup Request
- X2 Setup Response
- X2 Setup Failure
- Handover Request
- Handover Request Acknowledge
- UE Context Release
- X2 timers (t_reloc_prep, tx2_reloc_overall)
- Handover Cancel
- X2-U interface implemented
eNB/MCE M2AP
The M2AP layer is based on 3GPP 36.443 v14.0.1:
- M2 Setup Request
- M2 Setup Response
- M2 Setup Failure
- M2 Scheduling Information
- M2 Scheduling Information Response
- M2 Session Start Request
- M2 Session Start Response
MCE/MME M3AP
The M3AP layer is based on 3GPP 36.444 v14.0.1:
- M3 Setup Request
- M3 Setup Response
- M3 Setup Failure
- M3 Session Start Request
- M3 Session Start Response
eNB Advanced Features
To be completed
OpenAirInterface UE Feature Set
LTE UE PHY Layer
The Physical layer implements 3GPP 36.211, 36.212, 36.213 and provides the following features:
- LTE release 8.6 compliant, and implements a subset of release 10
- FDD and TDD configurations: 1 (experimental) and 3
- Bandwidth: 5, 10, and 20 MHz
- Transmission modes: 1, 2 (stable)
- Max number of antennas: 2
- CQI/PMI reporting: aperiodic, feedback mode 3 - 0 and 3 - 1
- PRACH preamble format 0
- All downlink (DL) channels are supported: PSS, SSS, PBCH, PCFICH, PHICH, PDCCH, PDSCH, PMCH
- All uplink (UL) channels are supported: PRACH, PUSCH, PUCCH (format 1/1a/1b), SRS, DRS
- LTE MBMS-dedicated cell (feMBMS) procedures subset for LTE release 14 (experimental)
- LTE non-MBSFN subframe (feMBMS) Carrier Adquistion Subframe-CAS procedures (PSS/SSS/PBCH/PDSH) (experimental)
- LTE MBSFN MBSFN subframe channel (feMBMS): PMCH (CS@1.25KHz) (channel estimation for 25MHz bandwidth) (experimental)
LTE UE MAC Layer
The MAC layer implements a subset of the 3GPP 36.321 release v8.6 in support of BCH, DLSCH, RACH, and ULSCH channels.
- RRC interface for CCCH, DCCH, and DTCH
- HARQ Support
- RA procedures and RNTI management
- RLC interface (AM, UM)
- UL power control
- Link adaptation
- MBMS-dedicated cell (feMBMS) RRC interface for BCCH
- eMBMS and MBMS-dedicated cell (feMBMS) RRC interface for MCCH, MTCH
LTE UE RLC Layer
The RLC layer implements a full specification of the 3GPP 36.322 release v9.3.
LTE UE PDCP Layer
The current PDCP layer is header compliant with 3GPP 36.323 Rel 10.1.0.
LTE UE RRC Layer
The RRC layer is based on 3GPP 36.331 v14.3.0 and implements the following functions:
- System Information decoding
- RRC connection establishment
- MBMS-dedicated cell (feMBMS) SI-MBMS/SIB1-MBMS management
LTE UE NAS Layer
The NAS layer is based on 3GPP 24.301 and implements the following functions:
- EMM attach/detach, authentication, tracking area update, and more
- ESM default/dedicated bearer, PDN connectivity, and more
OpenAirInterface Functional Split
- RCC: Radio-Cloud Center
- RAU: Radio-Access Unit
- RRU: Remote Radio-Unit
- IF4.5 / IF5 : similar to IEEE P1914.1
- FAPI (IF2) : specified by Small Cell Forum (open-nFAPI implementation)
- IF1 : F1 in 3GPP Release 15
OpenAirInterface 5G-NR Feature Set
General Parameters
The following features are valid for the gNB and the 5G-NR UE.
- Static TDD,
- Normal CP
- 30 kHz subcarrier spacing
- Bandwidths up to 80MHz (217 Physical Resource Blocks)
- Single antenna port (single beam)
- Slot format: 14 OFDM symbols in UL or DL
- Highly efficient 3GPP compliant LDPC encoder and decoder (BG1 and BG2 supported)
- Highly efficient 3GPP compliant polar encoder and decoder
- Encoder and decoder for short blocks
gNB Features
gNB PHY Layer
- Generation of PSS/SSS/PBCH for multiple beams and
- Generation of PDCCH for SIB1 (including generation of DCI, polar encoding, scrambling, modulation, RB mapping, etc)
- common search space configured by MIB
- user-specific search space configured by RRC
- DCI formats: 00, 10
- Generation of PDSCH (including Segmentation, LDPC encoding, rate matching, scrambling, modulation, RB mapping, etc).
- Single symbol DMRS, dmrs-TypeA-Position Pos2, DMRS configuration type 1
- PDSCH mapping type A
- NR-PUSCH (including Segmentation, LDPC encoding, rate matching, scrambling, modulation, RB mapping, etc).
- NR-PUCCH
- Format 0 (ACK/NACK)
gNB higher Layers
- NR RRC (38.331) Rel 15 messages using new asn1c
- LTE RRC (36.331) also updated to Rel 15
- Generation of MIB
- Application to read configuration file and program gNB RRC
- RRC -> MAC configuration
- MAC -> PHY configuration (using NR FAPI P5 interface)
- FAPI P7 interface for BCH PDU, DCI PDU, PDSCH PDU
For more details see this document
NR UE Features
NR UE PHY Layer
- initial synchronization
- Time tracking based on PDCCH DMRS
- Frequency offset estimation
- PBCH RX
- PDCCH RX
- PDSCH RX
- including first version of dual stream receiver for PDSCH
NR UE higher Layers
For more details see this document