Something went wrong on our end
-
Additionally, combined many of the individual dl_config_req and tx_req handle functions. Also removed some unused functions we added. Futhermore, removed our additions to the dl_config_req and tx_req memcpy functions.
Additionally, combined many of the individual dl_config_req and tx_req handle functions. Also removed some unused functions we added. Futhermore, removed our additions to the dl_config_req and tx_req memcpy functions.
lte-ue.c 104.65 KiB
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.1 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
/*! \file lte-ue.c
* \brief threads and support functions for real-time LTE UE target
* \author R. Knopp, F. Kaltenberger, Navid Nikaein
* \date 2015
* \version 0.1
* \company Eurecom
* \email: knopp@eurecom.fr,florian.kaltenberger@eurecom.fr, navid.nikaein@eurecom.fr
* \note
* \warning
*/
#include "lte-softmodem.h"
#include "rt_wrapper.h"
#include "LAYER2/MAC/mac.h"
#include "RRC/LTE/rrc_extern.h"
#include "PHY_INTERFACE/phy_stub_UE.h"
#include "PHY_INTERFACE/phy_interface_extern.h"
#include "PHY/INIT/phy_init.h"
#include "PHY/MODULATION/modulation_UE.h"
#include "PHY/LTE_ESTIMATION/lte_estimation.h"
#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all
//#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all
#include "PHY/phy_extern_ue.h"
#include "LAYER2/MAC/mac_extern.h"
#include "LAYER2/MAC/mac_proto.h"
#include "SCHED_UE/sched_UE.h"
#include "PHY/LTE_UE_TRANSPORT/transport_proto_ue.h"
#include <inttypes.h>
#include "common/utils/LOG/log.h"
#include "nfapi/oai_integration/vendor_ext.h"
#include "UTIL/OTG/otg_tx.h"
#include "UTIL/OTG/otg_externs.h"
#include "UTIL/MATH/oml.h"
#include "common/utils/LOG/vcd_signal_dumper.h"
#include "UTIL/OPT/opt.h"
#include "lte-softmodem.h"
#include "common/config/config_userapi.h"
#include "T.h"
extern double cpuf;
#define FRAME_PERIOD 100000000ULL
#define DAQ_PERIOD 66667ULL
#define FIFO_PRIORITY 40
typedef enum {
pss=0,
pbch=1,
si=2
} sync_mode_t;
void init_UE_threads(int);
void init_UE_threads_stub(int);
void init_UE_single_thread_stub(int);
void *UE_thread(void *arg);
void init_UE(int nb_inst,int eMBMS_active, int uecap_xer_in, int timing_correction, int phy_test, int UE_scan, int UE_scan_carrier, runmode_t mode,int rxgain,int txpowermax,LTE_DL_FRAME_PARMS *fp);
void init_UE_stub(int nb_inst,int,int,char *);
void init_UE_stub_single_thread(int nb_inst,int,int,char *);
int init_timer_thread(void);
extern void oai_subframe_ind(uint16_t sfn, uint16_t sf);
extern void multicast_link_start(void (*rx_handlerP) (unsigned int, char *),
unsigned char _multicast_group, char *multicast_ifname);
extern int oai_nfapi_crc_indication(nfapi_crc_indication_t *crc_ind);
extern int oai_nfapi_cqi_indication(nfapi_cqi_indication_t *cqi_ind);
extern int oai_nfapi_harq_indication(nfapi_harq_indication_t *harq_ind);
extern int oai_nfapi_sr_indication(nfapi_sr_indication_t *ind);
extern int oai_nfapi_rx_ind(nfapi_rx_indication_t *ind);
extern int multicast_link_write_sock(int groupP, char *dataP, uint32_t sizeP);
extern uint16_t sf_ahead;
//extern int tx_req_UE_MAC1();
void ue_stub_rx_handler(unsigned int, char *);
int32_t **rxdata;
int32_t **txdata;
int timer_subframe = 0;
int timer_frame = 0;
SF_ticking *phy_stub_ticking = NULL;
int next_ra_frame = 0;
module_id_t next_Mod_id = 0;
#define KHz (1000UL)
#define MHz (1000*KHz)
typedef struct eutra_band_s {
int16_t band;
uint32_t ul_min;
uint32_t ul_max;
uint32_t dl_min;
uint32_t dl_max;
lte_frame_type_t frame_type;
} eutra_band_t;
typedef struct band_info_s {
int nbands;
eutra_band_t band_info[100];
} band_info_t;
band_info_t bands_to_scan;
static const eutra_band_t eutra_bands[] = {
{ 1, 1920 * MHz, 1980 * MHz, 2110 * MHz, 2170 * MHz, FDD},
{ 2, 1850 * MHz, 1910 * MHz, 1930 * MHz, 1990 * MHz, FDD},
{ 3, 1710 * MHz, 1785 * MHz, 1805 * MHz, 1880 * MHz, FDD},
{ 4, 1710 * MHz, 1755 * MHz, 2110 * MHz, 2155 * MHz, FDD},
{ 5, 824 * MHz, 849 * MHz, 869 * MHz, 894 * MHz, FDD},
{ 6, 830 * MHz, 840 * MHz, 875 * MHz, 885 * MHz, FDD},
{ 7, 2500 * MHz, 2570 * MHz, 2620 * MHz, 2690 * MHz, FDD},
{ 8, 880 * MHz, 915 * MHz, 925 * MHz, 960 * MHz, FDD},
{ 9, 1749900 * KHz, 1784900 * KHz, 1844900 * KHz, 1879900 * KHz, FDD},
{10, 1710 * MHz, 1770 * MHz, 2110 * MHz, 2170 * MHz, FDD},
{11, 1427900 * KHz, 1452900 * KHz, 1475900 * KHz, 1500900 * KHz, FDD},
{12, 698 * MHz, 716 * MHz, 728 * MHz, 746 * MHz, FDD},
{13, 777 * MHz, 787 * MHz, 746 * MHz, 756 * MHz, FDD},
{14, 788 * MHz, 798 * MHz, 758 * MHz, 768 * MHz, FDD},
{17, 704 * MHz, 716 * MHz, 734 * MHz, 746 * MHz, FDD},
{20, 832 * MHz, 862 * MHz, 791 * MHz, 821 * MHz, FDD},
{22, 3510 * MHz, 3590 * MHz, 3410 * MHz, 3490 * MHz, FDD},
{33, 1900 * MHz, 1920 * MHz, 1900 * MHz, 1920 * MHz, TDD},
{34, 2010 * MHz, 2025 * MHz, 2010 * MHz, 2025 * MHz, TDD},
{35, 1850 * MHz, 1910 * MHz, 1850 * MHz, 1910 * MHz, TDD},
{36, 1930 * MHz, 1990 * MHz, 1930 * MHz, 1990 * MHz, TDD},
{37, 1910 * MHz, 1930 * MHz, 1910 * MHz, 1930 * MHz, TDD},
{38, 2570 * MHz, 2620 * MHz, 2570 * MHz, 2630 * MHz, TDD},
{39, 1880 * MHz, 1920 * MHz, 1880 * MHz, 1920 * MHz, TDD},
{40, 2300 * MHz, 2400 * MHz, 2300 * MHz, 2400 * MHz, TDD},
{41, 2496 * MHz, 2690 * MHz, 2496 * MHz, 2690 * MHz, TDD},
{42, 3400 * MHz, 3600 * MHz, 3400 * MHz, 3600 * MHz, TDD},
{43, 3600 * MHz, 3800 * MHz, 3600 * MHz, 3800 * MHz, TDD},
{44, 703 * MHz, 803 * MHz, 703 * MHz, 803 * MHz, TDD},
};
threads_t threads= {-1,-1,-1,-1,-1,-1,-1,-1};
pthread_t main_ue_thread;
pthread_attr_t attr_UE_thread;
struct sched_param sched_param_UE_thread;
void get_uethreads_params(void) {
paramdef_t cmdline_threadsparams[] =CMDLINE_UETHREADSPARAMS_DESC;
config_process_cmdline( cmdline_threadsparams,sizeof(cmdline_threadsparams)/sizeof(paramdef_t),NULL);
}
void phy_init_lte_ue_transport(PHY_VARS_UE *ue,int absraction_flag);
PHY_VARS_UE *init_ue_vars(LTE_DL_FRAME_PARMS *frame_parms,
uint8_t UE_id,
uint8_t abstraction_flag)
{
PHY_VARS_UE *ue = (PHY_VARS_UE *)malloc(sizeof(PHY_VARS_UE));
memset(ue,0,sizeof(PHY_VARS_UE));
if (frame_parms!=(LTE_DL_FRAME_PARMS *)NULL) { // if we want to give initial frame parms, allocate the PHY_VARS_UE structure and put them in
memcpy(&(ue->frame_parms), frame_parms, sizeof(LTE_DL_FRAME_PARMS));
}
ue->hw_timing_advance=get_softmodem_params()->hw_timing_advance;
ue->Mod_id = UE_id;
ue->mac_enabled = 1;
// In phy_stub_UE (MAC-to-MAC) mode these init functions don't need to get called. Is this correct?
if (NFAPI_MODE!=NFAPI_UE_STUB_PNF) {
// initialize all signal buffers
init_lte_ue_signal(ue,1,abstraction_flag);
// intialize transport
init_lte_ue_transport(ue,abstraction_flag);
}
return(ue);
}
char uecap_xer[1024];
void init_thread(int sched_runtime,
int sched_deadline,
int sched_fifo,
cpu_set_t *cpuset,
char *name)
{
#ifdef DEADLINE_SCHEDULER
if (sched_runtime!=0) {
struct sched_attr attr= {0};
attr.size = sizeof(attr);
attr.sched_policy = SCHED_DEADLINE;
attr.sched_runtime = sched_runtime;
attr.sched_deadline = sched_deadline;
attr.sched_period = 0;
AssertFatal(sched_setattr(0, &attr, 0) == 0,
"[SCHED] %s thread: sched_setattr failed %s \n", name, strerror(errno));
LOG_I(HW,"[SCHED][eNB] %s deadline thread %lu started on CPU %d\n",
name, (unsigned long)gettid(), sched_getcpu());
}
#else
if (CPU_COUNT(cpuset) > 0)
AssertFatal( 0 == pthread_setaffinity_np(pthread_self(), sizeof(cpu_set_t), cpuset), "");
struct sched_param sp;
sp.sched_priority = sched_fifo;
AssertFatal(pthread_setschedparam(pthread_self(),SCHED_FIFO,&sp)==0,
"Can't set thread priority, Are you root?\n");
/* Check the actual affinity mask assigned to the thread */
cpu_set_t *cset=CPU_ALLOC(CPU_SETSIZE);
if (0 == pthread_getaffinity_np(pthread_self(), CPU_ALLOC_SIZE(CPU_SETSIZE), cset)) {
char txt[512]= {0};
for (int j = 0; j < CPU_SETSIZE; j++)
if (CPU_ISSET(j, cset))
sprintf(txt+strlen(txt), " %d ", j);
printf("CPU Affinity of thread %s is %s\n", name, txt);
}
CPU_FREE(cset);
#endif
}
void init_UE(int nb_inst,
int eMBMS_active,
int uecap_xer_in,
int timing_correction,
int phy_test,
int UE_scan,
int UE_scan_carrier,
runmode_t mode,
int rxgain,
int txpowermax,
LTE_DL_FRAME_PARMS *fp0)
{
PHY_VARS_UE *UE;
int inst;
int ret;
LTE_DL_FRAME_PARMS *fp;
LOG_I(PHY,"UE : Calling Layer 2 for initialization\n");
l2_init_ue(eMBMS_active,(uecap_xer_in==1)?uecap_xer:NULL,
0,// cba_group_active
0); // HO flag
if (PHY_vars_UE_g==NULL) PHY_vars_UE_g = (PHY_VARS_UE ***)calloc(1+nb_inst,sizeof(PHY_VARS_UE **));
for (inst=0; inst<nb_inst; inst++) {
if (PHY_vars_UE_g[inst]==NULL) PHY_vars_UE_g[inst] = (PHY_VARS_UE **)calloc(1+MAX_NUM_CCs,sizeof(PHY_VARS_UE *));
LOG_I(PHY,"Allocating UE context %d\n",inst);
if ( !IS_SOFTMODEM_SIML1 ) PHY_vars_UE_g[inst][0] = init_ue_vars(fp0,inst,0);
else {
// needed for memcopy below. these are not used in the RU, but needed for UE
RC.ru[0]->frame_parms->nb_antennas_rx = fp0->nb_antennas_rx;
RC.ru[0]->frame_parms->nb_antennas_tx = fp0->nb_antennas_tx;
PHY_vars_UE_g[inst][0] = init_ue_vars(RC.ru[0]->frame_parms,inst,0);
}
// turn off timing control loop in UE
PHY_vars_UE_g[inst][0]->no_timing_correction = timing_correction;
UE = PHY_vars_UE_g[inst][0];
fp = &UE->frame_parms;
printf("PHY_vars_UE_g[0][0] = %p\n",UE);
if (phy_test==1)
UE->mac_enabled = 0;
else
UE->mac_enabled = 1;
if (UE->mac_enabled == 0) { //set default UL parameters for testing mode
for (int i=0; i<NUMBER_OF_CONNECTED_eNB_MAX; i++) {
UE->pusch_config_dedicated[i].betaOffset_ACK_Index = 0;
UE->pusch_config_dedicated[i].betaOffset_RI_Index = 0;
UE->pusch_config_dedicated[i].betaOffset_CQI_Index = 2;
UE->scheduling_request_config[i].sr_PUCCH_ResourceIndex = 0;
UE->scheduling_request_config[i].sr_ConfigIndex = 7+(0%3);
UE->scheduling_request_config[i].dsr_TransMax = sr_n4;
}
}
UE->UE_scan = UE_scan;
UE->UE_scan_carrier = UE_scan_carrier;
UE->mode = mode;
printf("UE->mode = %d\n",mode);
if (UE->mac_enabled == 1) {
UE->pdcch_vars[0][0]->crnti = 0x1234;
UE->pdcch_vars[1][0]->crnti = 0x1234;
} else {
UE->pdcch_vars[0][0]->crnti = 0x1235;
UE->pdcch_vars[1][0]->crnti = 0x1235;
}
UE->rx_total_gain_dB = rxgain;
UE->tx_power_max_dBm = txpowermax;
UE->frame_parms.nb_antennas_tx = fp0->nb_antennas_tx;
UE->frame_parms.nb_antennas_rx = fp0->nb_antennas_rx;
if (fp->frame_type == TDD) {
switch (fp->N_RB_DL) {
case 100:
if (fp->threequarter_fs) UE->N_TA_offset = (624*3)/4;
else UE->N_TA_offset = 624;
break;
case 75:
UE->N_TA_offset = (624*3)/4;
break;
case 50:
UE->N_TA_offset = 624/2;
break;
case 25:
UE->N_TA_offset = 624/4;
break;
case 15:
UE->N_TA_offset = 624/8;
break;
case 6:
UE->N_TA_offset = 624/16;
break;
default:
AssertFatal(1==0,"illegal N_RB_DL %d\n",fp->N_RB_DL);
break;
}
} else UE->N_TA_offset = 0;
if( IS_SOFTMODEM_BASICSIM)
/* this is required for the basic simulator in TDD mode
* TODO: find a proper cleaner solution
*/
UE->N_TA_offset = 0;
if (IS_SOFTMODEM_SIML1 ) init_ue_devices(UE);
LOG_I(PHY,"Intializing UE Threads for instance %d (%p,%p)...\n",inst,PHY_vars_UE_g[inst],PHY_vars_UE_g[inst][0]);
init_UE_threads(inst);
if (!IS_SOFTMODEM_SIML1 ) {
ret = openair0_device_load(&(UE->rfdevice), &openair0_cfg[0]);
if (ret !=0) {
exit_fun("Error loading device library");
}
}
UE->rfdevice.host_type = RAU_HOST;
// UE->rfdevice.type = NONE_DEV;
AssertFatal(0 == pthread_create(&UE->proc.pthread_ue,
&UE->proc.attr_ue,
UE_thread,
(void *)UE), "");
}
printf("UE threads created by %ld\n", gettid());
}
// Initiating all UEs within a single set of threads for PHY_STUB. Future extensions -> multiple
// set of threads for multiple UEs.
void init_UE_stub_single_thread(int nb_inst,
int eMBMS_active,
int uecap_xer_in,
char *emul_iface)
{
int inst;
LOG_I(PHY,"UE : Calling Layer 2 for initialization, nb_inst: %d \n", nb_inst);
l2_init_ue(eMBMS_active,(uecap_xer_in==1)?uecap_xer:NULL,
0,// cba_group_active
0); // HO flag
for (inst=0; inst<nb_inst; inst++) {
LOG_I(PHY,"Initializing memory for UE instance %d (%p)\n",inst,PHY_vars_UE_g[inst]);
// PHY_vars_UE_g[inst][0] = init_ue_vars(NULL,inst,0);
}
if(NFAPI_MODE != NFAPI_MODE_STANDALONE_PNF) {
init_timer_thread();
}
init_UE_single_thread_stub(nb_inst);
printf("UE threads created \n");
if(NFAPI_MODE!=NFAPI_UE_STUB_PNF && NFAPI_MODE!=NFAPI_MODE_STANDALONE_PNF) {
LOG_I(PHY,"Starting multicast link on %s\n",emul_iface);
multicast_link_start(ue_stub_rx_handler,0,emul_iface);
}
}
void init_UE_standalone_thread()
{
const char *standalone_addr = "127.0.0.1"; // these two lines go into init
int standalone_tx_port = 3211;
int standalone_rx_port = 3212;
ue_init_standalone_socket(standalone_addr, standalone_tx_port, standalone_rx_port);
pthread_t thread;
if (pthread_create(&thread, NULL, ue_standalone_pnf_task, NULL) != 0) {
LOG_E(MAC, "pthread_create failed for calling ue_standalone_pnf_task");
}
pthread_setname_np(thread, "oai:ue-stand");
}
void init_UE_stub(int nb_inst,
int eMBMS_active,
int uecap_xer_in,
char *emul_iface)
{
int inst;
LOG_I(PHY,"UE : Calling Layer 2 for initialization\n");
l2_init_ue(eMBMS_active,(uecap_xer_in==1)?uecap_xer:NULL,
0,// cba_group_active
0); // HO flag
for (inst=0; inst<nb_inst; inst++) {
LOG_I(PHY,"Initializing memory for UE instance %d (%p)\n",inst,PHY_vars_UE_g[inst]);
PHY_vars_UE_g[inst][0] = init_ue_vars(NULL,inst,0);
}
init_timer_thread();
for (inst=0; inst<nb_inst; inst++) {
LOG_I(PHY,"Intializing UE Threads for instance %d (%p,%p)...\n",inst,PHY_vars_UE_g[inst],PHY_vars_UE_g[inst][0]);
init_UE_threads_stub(inst);
}
printf("UE threads created \n");
LOG_I(PHY,"Starting multicast link on %s\n",emul_iface);
if(NFAPI_MODE!=NFAPI_UE_STUB_PNF)
multicast_link_start(ue_stub_rx_handler,0,emul_iface);
}
/*!
* \brief This is the UE synchronize thread.
* It performs band scanning and synchonization.
* \param arg is a pointer to a \ref PHY_VARS_UE structure.
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
static void *UE_thread_synch(void *arg)
{
static int UE_thread_synch_retval;
int i ;
PHY_VARS_UE *UE = (PHY_VARS_UE *) arg;
int current_band = 0;
int current_offset = 0;
sync_mode_t sync_mode = pbch;
int CC_id = UE->CC_id;
int ind;
int found;
int freq_offset=0;
char threadname[128];
printf("UE_thread_sync in with PHY_vars_UE %p\n",arg);
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
if ( threads.sync != -1 )
CPU_SET(threads.sync, &cpuset);
// this thread priority must be lower that the main acquisition thread
sprintf(threadname, "sync UE %d\n", UE->Mod_id);
init_thread(100000, 500000, FIFO_PRIORITY-1, &cpuset, threadname);
printf("starting UE synch thread (IC %d)\n",UE->proc.instance_cnt_synch);
ind = 0;
found = 0;
if (UE->UE_scan == 0) {
do {
current_band = eutra_bands[ind].band;
printf( "Scanning band %d, dl_min %"PRIu32", ul_min %"PRIu32"\n", current_band, eutra_bands[ind].dl_min,eutra_bands[ind].ul_min);
if ((eutra_bands[ind].dl_min <= UE->frame_parms.dl_CarrierFreq) && (eutra_bands[ind].dl_max >= UE->frame_parms.dl_CarrierFreq)) {
for (i=0; i<4; i++)
uplink_frequency_offset[CC_id][i] = eutra_bands[ind].ul_min - eutra_bands[ind].dl_min;
found = 1;
break;
}
ind++;
} while (ind < sizeof(eutra_bands) / sizeof(eutra_bands[0]));
if (found == 0) {
LOG_E(PHY,"Can't find EUTRA band for frequency %d",UE->frame_parms.dl_CarrierFreq);
exit_fun("Can't find EUTRA band for frequency");
return &UE_thread_synch_retval;
}
LOG_I( PHY, "[SCHED][UE] Check absolute frequency DL %"PRIu32", UL %"PRIu32" (oai_exit %d, rx_num_channels %d)\n", UE->frame_parms.dl_CarrierFreq, UE->frame_parms.ul_CarrierFreq,oai_exit,
openair0_cfg[0].rx_num_channels);
for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = UE->frame_parms.dl_CarrierFreq;
openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] = UE->frame_parms.ul_CarrierFreq;
openair0_cfg[UE->rf_map.card].autocal[UE->rf_map.chain+i] = 1;
if (uplink_frequency_offset[CC_id][i] != 0) //
openair0_cfg[UE->rf_map.card].duplex_mode = duplex_mode_FDD;
else //FDD
openair0_cfg[UE->rf_map.card].duplex_mode = duplex_mode_TDD;
}
sync_mode = pbch;
} else if (UE->UE_scan == 1) {
current_band=0;
for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
downlink_frequency[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[CC_id].dl_min;
uplink_frequency_offset[UE->rf_map.card][UE->rf_map.chain+i] =
bands_to_scan.band_info[CC_id].ul_min-bands_to_scan.band_info[CC_id].dl_min;
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i];
openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] =
downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i];
openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB;
}
}
/*
while (sync_var<0)
pthread_cond_wait(&sync_cond, &sync_mutex);
pthread_mutex_unlock(&sync_mutex);
*/
wait_sync("UE_thread_sync");
printf("Started device, unlocked sync_mutex (UE_sync_thread)\n");
while (oai_exit==0) {
AssertFatal ( 0== pthread_mutex_lock(&UE->proc.mutex_synch), "");
while (UE->proc.instance_cnt_synch < 0)
// the thread waits here most of the time
pthread_cond_wait( &UE->proc.cond_synch, &UE->proc.mutex_synch );
AssertFatal ( 0== pthread_mutex_unlock(&UE->proc.mutex_synch), "");
switch (sync_mode) {
case pss:
LOG_I(PHY,"[SCHED][UE] Scanning band %d (%d), freq %u\n",bands_to_scan.band_info[current_band].band, current_band,bands_to_scan.band_info[current_band].dl_min+current_offset);
lte_sync_timefreq(UE,current_band,bands_to_scan.band_info[current_band].dl_min+current_offset);
current_offset += 20000000; // increase by 20 MHz
if (current_offset > bands_to_scan.band_info[current_band].dl_max-bands_to_scan.band_info[current_band].dl_min) {
current_band++;
current_offset=0;
}
if (current_band==bands_to_scan.nbands) {
current_band=0;
oai_exit=1;
}
for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
downlink_frequency[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[current_band].dl_min+current_offset;
uplink_frequency_offset[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[current_band].ul_min-bands_to_scan.band_info[0].dl_min + current_offset;
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i];
openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i];
openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB;
if (UE->UE_scan_carrier) {
openair0_cfg[UE->rf_map.card].autocal[UE->rf_map.chain+i] = 1;
}
}
break;
case pbch:
LOG_I(PHY, "[UE thread Synch] Running Initial Synch (mode %d)\n",UE->mode);
if (initial_sync( UE, UE->mode ) == 0) {
LOG_I( HW, "Got synch: hw_slot_offset %d, carrier off %d Hz, rxgain %d (DL %lu, UL %lu), UE_scan_carrier %d\n",
(UE->rx_offset<<1) / UE->frame_parms.samples_per_tti,
freq_offset,
UE->rx_total_gain_dB,
downlink_frequency[0][0]+freq_offset,
downlink_frequency[0][0]+uplink_frequency_offset[0][0]+freq_offset,
UE->UE_scan_carrier );
// rerun with new cell parameters and frequency-offset
for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB;//-USRP_GAIN_OFFSET;
if (UE->UE_scan_carrier == 1) {
if (freq_offset >= 0)
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] += abs(UE->common_vars.freq_offset);
else
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] -= abs(UE->common_vars.freq_offset);
openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] =
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i]+uplink_frequency_offset[CC_id][i];
downlink_frequency[CC_id][i] = openair0_cfg[CC_id].rx_freq[i];
freq_offset=0;
}
}
// reconfigure for potentially different bandwidth
switch(UE->frame_parms.N_RB_DL) {
case 6:
openair0_cfg[UE->rf_map.card].sample_rate =1.92e6;
openair0_cfg[UE->rf_map.card].rx_bw =.96e6;
openair0_cfg[UE->rf_map.card].tx_bw =.96e6;
// openair0_cfg[0].rx_gain[0] -= 12;
break;
case 25:
openair0_cfg[UE->rf_map.card].sample_rate =7.68e6;
openair0_cfg[UE->rf_map.card].rx_bw =2.5e6;
openair0_cfg[UE->rf_map.card].tx_bw =2.5e6;
// openair0_cfg[0].rx_gain[0] -= 6;
break;
case 50:
openair0_cfg[UE->rf_map.card].sample_rate =15.36e6;
openair0_cfg[UE->rf_map.card].rx_bw =5.0e6;
openair0_cfg[UE->rf_map.card].tx_bw =5.0e6;
// openair0_cfg[0].rx_gain[0] -= 3;
break;
case 100:
openair0_cfg[UE->rf_map.card].sample_rate=30.72e6;
openair0_cfg[UE->rf_map.card].rx_bw=10.0e6;
openair0_cfg[UE->rf_map.card].tx_bw=10.0e6;
// openair0_cfg[0].rx_gain[0] -= 0;
break;
}
UE->rfdevice.trx_set_freq_func(&UE->rfdevice,&openair0_cfg[0],0);
//UE->rfdevice.trx_set_gains_func(&openair0,&openair0_cfg[0]);
//UE->rfdevice.trx_stop_func(&UE->rfdevice);
sleep(1);
init_frame_parms(&UE->frame_parms,1);
/*if (UE->rfdevice.trx_start_func(&UE->rfdevice) != 0 ) {
LOG_E(HW,"Could not start the device\n");
oai_exit=1;
}*/
if (UE->UE_scan_carrier == 1) {
UE->UE_scan_carrier = 0;
} else {
AssertFatal ( 0== pthread_mutex_lock(&UE->proc.mutex_synch), "");
UE->is_synchronized = 1;
AssertFatal ( 0== pthread_mutex_unlock(&UE->proc.mutex_synch), "");
if( UE->mode == rx_dump_frame ) {
FILE *fd;
if ((UE->proc.proc_rxtx[0].frame_rx&1) == 0) { // this guarantees SIB1 is present
if ((fd = fopen("rxsig_frame0.dat","w")) != NULL) {
fwrite((void *)&UE->common_vars.rxdata[0][0],
sizeof(int32_t),
10*UE->frame_parms.samples_per_tti,
fd);
LOG_I(PHY,"Dummping Frame ... bye bye \n");
fclose(fd);
exit(0);
} else {
LOG_E(PHY,"Cannot open file for writing\n");
exit(0);
}
} else {
AssertFatal ( 0== pthread_mutex_lock(&UE->proc.mutex_synch), "");
UE->is_synchronized = 0;
AssertFatal ( 0== pthread_mutex_unlock(&UE->proc.mutex_synch), "");
}
}
}
} else {
// initial sync failed
// calculate new offset and try again
if (UE->UE_scan_carrier == 1) {
if (freq_offset >= 0)
freq_offset += 100;
freq_offset *= -1;
if (abs(freq_offset) > 7500) {
LOG_I( PHY, "[initial_sync] No cell synchronization found, abandoning\n" );
FILE *fd;
if ((fd = fopen("rxsig_frame0.dat","w"))!=NULL) {
fwrite((void *)&UE->common_vars.rxdata[0][0],
sizeof(int32_t),
10*UE->frame_parms.samples_per_tti,
fd);
LOG_I(PHY,"Dummping Frame ... bye bye \n");
fclose(fd);
exit(0);
}
AssertFatal(1==0,"No cell synchronization found, abandoning");
return &UE_thread_synch_retval; // not reached
}
}
LOG_I(PHY, "[initial_sync] trying carrier off %d Hz, rxgain %d (DL %lu, UL %lu)\n",
freq_offset,
UE->rx_total_gain_dB,
downlink_frequency[0][0]+freq_offset,
downlink_frequency[0][0]+uplink_frequency_offset[0][0]+freq_offset );
for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]+freq_offset;
openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i]+freq_offset;
openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB;//-USRP_GAIN_OFFSET;
if (UE->UE_scan_carrier==1)
openair0_cfg[UE->rf_map.card].autocal[UE->rf_map.chain+i] = 1;
}
UE->rfdevice.trx_set_freq_func(&UE->rfdevice,&openair0_cfg[0],0);
}// initial_sync=0
break;
case si:
default:
break;
}
AssertFatal ( 0== pthread_mutex_lock(&UE->proc.mutex_synch), "");
// indicate readiness
UE->proc.instance_cnt_synch--;
AssertFatal ( 0== pthread_mutex_unlock(&UE->proc.mutex_synch), "");
VCD_SIGNAL_DUMPER_DUMP_FUNCTION_BY_NAME( VCD_SIGNAL_DUMPER_FUNCTIONS_UE_THREAD_SYNCH, 0 );
} // while !oai_exit
return &UE_thread_synch_retval;
}
/*!
* \brief This is the UE thread for RX subframe n and TX subframe n+4.
* This thread performs the phy_procedures_UE_RX() on every received slot.
* then, if TX is enabled it performs TX for n+4.
* \param arg is a pointer to a \ref PHY_VARS_UE structure.
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
const char *get_connectionloss_errstr(int errcode)
{
switch (errcode) {
case CONNECTION_LOST:
return "RRC Connection lost, returning to PRACH";
case PHY_RESYNCH:
return "RRC Connection lost, trying to resynch";
case RESYNCH:
return "return to PRACH and perform a contention-free access";
};
return "UNKNOWN RETURN CODE";
}
static void *UE_thread_rxn_txnp4(void *arg)
{
static __thread int UE_thread_rxtx_retval;
struct rx_tx_thread_data *rtd = arg;
UE_rxtx_proc_t *proc = rtd->proc;
PHY_VARS_UE *UE = rtd->UE;
proc->subframe_rx=proc->sub_frame_start;
char threadname[256];
sprintf(threadname,"UE_%d_proc_%d", UE->Mod_id, proc->sub_frame_start);
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
if ( (proc->sub_frame_start+1)%RX_NB_TH == 0 && threads.one != -1 )
CPU_SET(threads.one, &cpuset);
if ( (proc->sub_frame_start+1)%RX_NB_TH == 1 && threads.two != -1 )
CPU_SET(threads.two, &cpuset);
if ( (proc->sub_frame_start+1)%RX_NB_TH == 2 && threads.three != -1 )
CPU_SET(threads.three, &cpuset);
//CPU_SET(threads.three, &cpuset);
init_thread(900000,1000000, FIFO_PRIORITY-1, &cpuset,
threadname);
while (!oai_exit) {
if (pthread_mutex_lock(&proc->mutex_rxtx) != 0) {
LOG_E( PHY, "[SCHED][UE] error locking mutex for UE RXTX\n" );
exit_fun("nothing to add");
}
while (proc->instance_cnt_rxtx < 0) {
// most of the time, the thread is waiting here
pthread_cond_wait( &proc->cond_rxtx, &proc->mutex_rxtx );
}
//printf("Processing sub frqme %d in %s\n", proc->subframe_rx, threadname);
initRefTimes(t2);
initRefTimes(t3);
pickTime(current);
updateTimes(proc->gotIQs, &t2, 10000, "Delay to wake up UE_Thread_Rx (case 2)");
// Process Rx data for one sub-frame
lte_subframe_t sf_type = subframe_select( &UE->frame_parms, proc->subframe_rx);
if ((sf_type == SF_DL) ||
(UE->frame_parms.frame_type == FDD) ||
(sf_type == SF_S)) {
if (UE->frame_parms.frame_type == TDD) {
LOG_D(PHY, "%s,TDD%d,%s: calling UE_RX\n",
threadname,
UE->frame_parms.tdd_config,
(sf_type==SF_DL? "SF_DL" :
(sf_type==SF_UL? "SF_UL" :
(sf_type==SF_S ? "SF_S" : "UNKNOWN_SF_TYPE"))));
} else {
LOG_D(PHY, "%s,%s,%s: calling UE_RX\n",
threadname,
(UE->frame_parms.frame_type==FDD? "FDD":
(UE->frame_parms.frame_type==TDD? "TDD":"UNKNOWN_DUPLEX_MODE")),
(sf_type==SF_DL? "SF_DL" :
(sf_type==SF_UL? "SF_UL" :
(sf_type==SF_S ? "SF_S" : "UNKNOWN_SF_TYPE"))));
}
#ifdef UE_SLOT_PARALLELISATION
phy_procedures_slot_parallelization_UE_RX( UE, proc, 0, 0, 1, UE->mode, no_relay, NULL );
#else
phy_procedures_UE_RX(UE, proc, 0, 0, 1, UE->mode);
#endif
}
#if UE_TIMING_TRACE
start_meas(&UE->generic_stat);
#endif
if (UE->mac_enabled==1) {
int ret = ue_scheduler(UE->Mod_id,
proc->frame_rx,
proc->subframe_rx,
proc->frame_tx,
proc->subframe_tx,
subframe_select(&UE->frame_parms,proc->subframe_tx),
0,
0/*FIXME CC_id*/);
if ( ret != CONNECTION_OK) {
LOG_E( PHY, "[UE %"PRIu8"] Frame %"PRIu32", subframe %u %s\n",
UE->Mod_id, proc->frame_rx, proc->subframe_tx,get_connectionloss_errstr(ret) );
}
}
#if UE_TIMING_TRACE
stop_meas(&UE->generic_stat);
#endif
// Prepare the future Tx data
if ((subframe_select( &UE->frame_parms, proc->subframe_tx) == SF_UL) ||
(UE->frame_parms.frame_type == FDD) )
if (UE->mode != loop_through_memory)
phy_procedures_UE_TX(UE,proc,0,0,UE->mode);
if ((subframe_select( &UE->frame_parms, proc->subframe_tx) == SF_S) &&
(UE->frame_parms.frame_type == TDD))
if (UE->mode != loop_through_memory)
phy_procedures_UE_S_TX(UE,0,0);
updateTimes(current, &t3, 10000, "Delay to process sub-frame (case 3)");
proc->instance_cnt_rxtx--;
if ( IS_SOFTMODEM_BASICSIM || IS_SOFTMODEM_RFSIM ) {
if (pthread_cond_signal(&proc->cond_rxtx) != 0) abort();
}
if (pthread_mutex_unlock(&proc->mutex_rxtx) != 0) {
LOG_E( PHY, "[SCHED][UE] error unlocking mutex for UE RXTX\n" );
exit_fun("noting to add");
}
}
// thread finished
free(arg);
return &UE_thread_rxtx_retval;
}
unsigned int emulator_absSF;
void ue_stub_rx_handler(unsigned int num_bytes,
char *rx_buffer)
{
PHY_VARS_UE *UE;
UE = PHY_vars_UE_g[0][0];
UE_tport_t *pdu = (UE_tport_t *)rx_buffer;
SLSCH_t *slsch = (SLSCH_t *)&pdu->slsch;
SLDCH_t *sldch = (SLDCH_t *)&pdu->sldch;
switch (((UE_tport_header_t *)rx_buffer)->packet_type) {
case TTI_SYNC:
emulator_absSF = ((UE_tport_header_t *)rx_buffer)->absSF;
wakeup_thread(&UE->timer_mutex,&UE->timer_cond,&UE->instance_cnt_timer,"timer_thread",100,1);
break;
case SLSCH:
LOG_I(PHY,"Emulator SFN.SF %d.%d, Got SLSCH packet\n",emulator_absSF/10,emulator_absSF%10);
LOG_I(PHY,"Received %d bytes on UE-UE link for SFN.SF %d.%d, sending SLSCH payload (%d bytes) to MAC\n",num_bytes,
pdu->header.absSF/10,pdu->header.absSF%10,
slsch->payload_length);
printf("SLSCH:");
for (int i=0; i<sizeof(SLSCH_t); i++) printf("%x ",((uint8_t *)slsch)[i]);
printf("\n");
ue_send_sl_sdu(0,
0,
pdu->header.absSF/10,
pdu->header.absSF%10,
pdu->payload,
slsch->payload_length,
0,
SL_DISCOVERY_FLAG_NO);
break;
case SLDCH:
LOG_I(PHY,"Emulator SFN.SF %d.%d, Got SLDCH packet\n",emulator_absSF/10,emulator_absSF%10);
LOG_I(PHY,"Received %d bytes on UE-UE link for SFN.SF %d.%d, sending SLDCH payload (%d bytes) to MAC\n",num_bytes,
pdu->header.absSF/10,pdu->header.absSF%10,
sldch->payload_length);
printf("SLDCH:");
for (int i=0; i<sizeof(SLDCH_t); i++) printf("%x ",((uint8_t *)sldch)[i]);
printf("\n");
ue_send_sl_sdu(0,
0,
pdu->header.absSF/10,
pdu->header.absSF%10,
sldch->payload,
sldch->payload_length,
0,
SL_DISCOVERY_FLAG_YES);
break;
}
}
uint64_t clock_usec(void)
{
struct timespec t;
if (clock_gettime(CLOCK_MONOTONIC, &t) == -1)
{
abort();
}
return (uint64_t)t.tv_sec * 1000000 + (t.tv_nsec / 1000);
}
static void reset_queue(queue_t *q)
{
void *p;
while ((p = get_queue(q)) != NULL)
{
free(p);
}
}
/*!
* \brief This is the UE thread for RX subframe n and TX subframe n+4.
* This thread performs the phy_procedures_UE_RX() on every received slot.
* then, if TX is enabled it performs TX for n+4.
* \param arg is a pointer to a \ref PHY_VARS_UE structure.
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
static void *UE_phy_stub_standalone_pnf_task(void *arg)
{
#if 1
{
struct sched_param sparam =
{
.sched_priority = 79,
};
if (pthread_setschedparam(pthread_self(), SCHED_RR, &sparam) != 0)
{
LOG_E(PHY,"pthread_setschedparam: %s\n", strerror(errno));
}
}
#else
thread_top_init("UE_phy_stub_thread_rxn_txnp4", 1, 870000L, 1000000L, 1000000L);
#endif
// for multipule UE's L2-emulator
//module_id_t Mod_id = 0;
//int init_ra_UE = -1; // This counter is used to initiate the RA of each UE in different SFrames
struct rx_tx_thread_data *rtd = arg;
if (rtd == NULL) {
LOG_E(MAC, "[SCHED][UE] rx_tx_thread_data *rtd: NULL pointer\n");
exit_fun("nothing to add");
}
UE_rxtx_proc_t *proc = rtd->proc;
// settings for nfapi-L2-emulator mode
module_id_t ue_thread_id = rtd->ue_thread_id;
uint16_t ue_index = 0;
uint16_t ue_num = NB_UE_INST / NB_THREAD_INST + ((NB_UE_INST % NB_THREAD_INST > ue_thread_id) ? 1 : 0);
module_id_t ue_Mod_id;
PHY_VARS_UE *UE = NULL;
int ret;
proc = &PHY_vars_UE_g[0][0]->proc.proc_rxtx[0];
UE = rtd->UE;
UL_INFO = (UL_IND_t *)calloc(1, sizeof(UL_IND_t));
UL_INFO->rx_ind.rx_indication_body.rx_pdu_list = calloc(NB_UE_INST, sizeof(nfapi_rx_indication_pdu_t));
UL_INFO->rx_ind.rx_indication_body.number_of_pdus = 0;
UL_INFO->crc_ind.crc_indication_body.crc_pdu_list = calloc(NB_UE_INST, sizeof(nfapi_crc_indication_pdu_t));
UL_INFO->crc_ind.crc_indication_body.number_of_crcs = 0;
UL_INFO->harq_ind.harq_indication_body.harq_pdu_list = calloc(NB_UE_INST, sizeof(nfapi_harq_indication_pdu_t));
UL_INFO->harq_ind.harq_indication_body.number_of_harqs = 0;
UL_INFO->sr_ind.sr_indication_body.sr_pdu_list = calloc(NB_UE_INST, sizeof(nfapi_sr_indication_pdu_t));
UL_INFO->sr_ind.sr_indication_body.number_of_srs = 0;
UL_INFO->cqi_ind.cqi_indication_body.cqi_pdu_list = calloc(NB_UE_INST, sizeof(nfapi_cqi_indication_pdu_t));
UL_INFO->cqi_ind.cqi_indication_body.cqi_raw_pdu_list = calloc(NB_UE_INST, sizeof(nfapi_cqi_indication_raw_pdu_t));
UL_INFO->cqi_ind.cqi_indication_body.number_of_cqis = 0;
proc->subframe_rx = proc->sub_frame_start;
proc->subframe_tx = -1;
proc->frame_rx = -1;
proc->frame_tx = -1;
// Initializations for nfapi-L2-emulator mode
sync_var = 0;
//PANOS: CAREFUL HERE!
wait_sync("UE_phy_stub_standalone_pnf_task");
int last_sfn_sf = -1;
LOG_I(MAC, "Clearing Queues\n");
reset_queue(&dl_config_req_tx_req_queue);
reset_queue(&ul_config_req_queue);
reset_queue(&hi_dci0_req_queue);
while (!oai_exit) {
bool sent_any = false;
if (sem_wait(&sfn_semaphore) != 0) {
LOG_E(MAC, "sem_wait() error\n");
abort();
}
int sfn_sf = current_sfn_sf;
if (sfn_sf == last_sfn_sf)
{
LOG_W(MAC, "repeated sfn_sf = %d.%d\n",
sfn_sf >> 4, sfn_sf & 15);
continue;
}
last_sfn_sf = sfn_sf;
nfapi_dl_config_req_tx_req_t *dl_config_req_tx_req = get_queue(&dl_config_req_tx_req_queue);
nfapi_ul_config_request_t *ul_config_req = get_queue(&ul_config_req_queue);
nfapi_hi_dci0_request_t *hi_dci0_req = get_queue(&hi_dci0_req_queue);
LOG_I(MAC, "received from proxy frame %d subframe %d\n",
NFAPI_SFNSF2SFN(sfn_sf), NFAPI_SFNSF2SF(sfn_sf));
if (ul_config_req != NULL) {
uint8_t ul_num_pdus = ul_config_req->ul_config_request_body.number_of_pdus;
if (ul_num_pdus > 0) {
char *ul_str = nfapi_ul_config_req_to_string(ul_config_req);
LOG_I(MAC, "ul_config_req: %s\n", ul_str);
free(ul_str);
}
}
if (hi_dci0_req != NULL) {
LOG_D(MAC, "hi_dci0_req pdus: %u Frame: %d Subframe: %d\n",
hi_dci0_req->hi_dci0_request_body.number_of_dci,
NFAPI_SFNSF2SFN(hi_dci0_req->sfn_sf), NFAPI_SFNSF2SF(hi_dci0_req->sfn_sf));
}
if (dl_config_req_tx_req != NULL) {
nfapi_tx_req_pdu_list_t *tx_req_pdu_list = dl_config_req_tx_req->tx_req_pdu_list;
nfapi_dl_config_request_t *dl_config_req = dl_config_req_tx_req->dl_config_req;
uint16_t dl_num_pdus = dl_config_req->dl_config_request_body.number_pdu;
LOG_A(MAC, "(OAI UE) Received dl_config_req from proxy at Frame: %d, Subframe: %d,"
" with number of PDUs: %u\n",
NFAPI_SFNSF2SFN(dl_config_req->sfn_sf), NFAPI_SFNSF2SF(dl_config_req->sfn_sf),
dl_num_pdus);
if (dl_num_pdus > 0) {
char *dl_str = nfapi_dl_config_req_to_string(dl_config_req);
LOG_I(MAC, "dl_config_req: %s\n", dl_str);
free(dl_str);
}
LOG_D(MAC, "tx_req pdus: %d\n", tx_req_pdu_list->num_pdus);
// Handling dl_config_req and tx_req:
nfapi_dl_config_request_body_t *dl_config_req_body = &dl_config_req->dl_config_request_body;
for (int i = 0; i < dl_config_req_body->number_pdu; ++i) {
nfapi_dl_config_request_pdu_t *pdu = &dl_config_req_body->dl_config_pdu_list[i];
if (pdu->pdu_type == NFAPI_DL_CONFIG_DCI_DL_PDU_TYPE) {
i += 1;
AssertFatal(i < dl_config_req->dl_config_request_body.number_pdu,
"Need PDU following DCI at index %d, but not found\n",
i);
nfapi_dl_config_request_pdu_t *dlsch = &dl_config_req_body->dl_config_pdu_list[i];
if (dlsch->pdu_type != NFAPI_DL_CONFIG_DLSCH_PDU_TYPE) {
LOG_E(MAC, "expected DLSCH PDU at index %d\n", i);
continue;
}
dl_config_req_UE_MAC_dci(NFAPI_SFNSF2SFN(dl_config_req->sfn_sf),
NFAPI_SFNSF2SF(dl_config_req->sfn_sf),
pdu,
dlsch,
ue_num,
tx_req_pdu_list);
} else if (pdu->pdu_type == NFAPI_DL_CONFIG_BCH_PDU_TYPE) {
dl_config_req_UE_MAC_bch(NFAPI_SFNSF2SFN(dl_config_req->sfn_sf),
NFAPI_SFNSF2SF(dl_config_req->sfn_sf),
pdu,
ue_num);
} else if (pdu->pdu_type == NFAPI_DL_CONFIG_MCH_PDU_TYPE) {
dl_config_req_UE_MAC_mch(NFAPI_SFNSF2SFN(dl_config_req->sfn_sf),
NFAPI_SFNSF2SF(dl_config_req->sfn_sf),
pdu,
ue_num,
tx_req_pdu_list);
}
}
}
if (hi_dci0_req) {
nfapi_hi_dci0_request_body_t *hi_dci0_body = &hi_dci0_req->hi_dci0_request_body;
for (int i = 0; i < hi_dci0_body->number_of_dci + hi_dci0_body->number_of_hi; i++) {
nfapi_hi_dci0_request_pdu_t *pdu = &hi_dci0_body->hi_dci0_pdu_list[i];
hi_dci0_req_UE_MAC(NFAPI_SFNSF2SFN(hi_dci0_req->sfn_sf),
NFAPI_SFNSF2SF(hi_dci0_req->sfn_sf),
pdu,
ue_num); // This function doesnt do anything? - Andrew
}
}
for (ue_index = 0; ue_index < ue_num; ue_index++) {
ue_Mod_id = ue_thread_id + NB_THREAD_INST * ue_index; // Always 0 in standalone pnf mode
UE = PHY_vars_UE_g[ue_Mod_id][0];
#if UE_TIMING_TRACE
start_meas(&UE->generic_stat);
#endif
int rx_frame = NFAPI_SFNSF2SF(sfn_sf) < 4 ? (NFAPI_SFNSF2SFN(sfn_sf) + 1023) % 1024 : NFAPI_SFNSF2SFN(sfn_sf); // subtracting 4 from subframe_tx
int rx_subframe = NFAPI_SFNSF2SF(sfn_sf) < 4 ? NFAPI_SFNSF2SF(sfn_sf) + 6 : NFAPI_SFNSF2SF(sfn_sf) - 4;
LOG_D(MAC, "rx_frame %d rx_subframe %d\n", rx_frame, rx_subframe);
if (UE->mac_enabled == 1) {
ret = ue_scheduler(ue_Mod_id,
rx_frame,
rx_subframe,
NFAPI_SFNSF2SFN(sfn_sf),
NFAPI_SFNSF2SF(sfn_sf),
subframe_select(&UE->frame_parms, NFAPI_SFNSF2SF(sfn_sf)),
0,
0 /*FIXME CC_id*/);
if (ret != CONNECTION_OK) {
LOG_E(PHY, "[UE %" PRIu8 "] Frame %" PRIu32 ", subframe %u %s\n",
UE->Mod_id, rx_frame, NFAPI_SFNSF2SF(sfn_sf), get_connectionloss_errstr(ret));
}
}
#if UE_TIMING_TRACE
stop_meas(&UE->generic_stat);
#endif
// Prepare the future Tx data
if ((subframe_select(&UE->frame_parms, NFAPI_SFNSF2SF(sfn_sf)) == SF_UL) ||
(UE->frame_parms.frame_type == FDD))
{
if (UE->mode != loop_through_memory)
{
// We make the start of RA between consecutive UEs differ by 20 frames
//if ((UE_mac_inst[Mod_id].UE_mode[0] == PRACH && Mod_id == 0) || (UE_mac_inst[Mod_id].UE_mode[0] == PRACH && Mod_id>0 && rx_frame >= UE_mac_inst[Mod_id-1].ra_frame + 20) ) {
if (UE_mac_inst[ue_Mod_id].UE_mode[0] == RA_RESPONSE &&
is_prach_subframe(&UE->frame_parms, NFAPI_SFNSF2SFN(sfn_sf), NFAPI_SFNSF2SF(sfn_sf)))
{
UE_mac_inst[ue_Mod_id].UE_mode[0] = PRACH;
}
LOG_D(MAC, "UE_mode: %d\n", UE_mac_inst[ue_Mod_id].UE_mode[0]);
if (UE_mac_inst[ue_Mod_id].UE_mode[0] == PRACH)
{ //&& ue_Mod_id == next_Mod_id) {
next_ra_frame++;
if (next_ra_frame > 500)
{
// check if we have PRACH opportunity
if (is_prach_subframe(&UE->frame_parms, NFAPI_SFNSF2SFN(sfn_sf), NFAPI_SFNSF2SF(sfn_sf)) && UE_mac_inst[ue_Mod_id].SI_Decoded == 1)
{
// The one working strangely...
//if (is_prach_subframe(&UE->frame_parms,NFAPI_SFNSF2SFN(sfn_sf), NFAPI_SFNSF2SF(sfn_sf) && Mod_id == (module_id_t) init_ra_UE) ) {
PRACH_RESOURCES_t *prach_resources = ue_get_rach(ue_Mod_id, 0, NFAPI_SFNSF2SFN(sfn_sf), 0, NFAPI_SFNSF2SF(sfn_sf));
if (prach_resources != NULL)
{
LOG_I(MAC, "preamble_received_tar_power: %d\n",
prach_resources->ra_PREAMBLE_RECEIVED_TARGET_POWER);
UE_mac_inst[ue_Mod_id].ra_frame = NFAPI_SFNSF2SFN(sfn_sf);
LOG_D(MAC, "UE_phy_stub_thread_rxn_txnp4 before RACH, Mod_id: %d frame %d subframe %d\n", ue_Mod_id, NFAPI_SFNSF2SFN(sfn_sf), NFAPI_SFNSF2SF(sfn_sf));
fill_rach_indication_UE_MAC(ue_Mod_id, NFAPI_SFNSF2SFN(sfn_sf), NFAPI_SFNSF2SF(sfn_sf), UL_INFO, prach_resources->ra_PreambleIndex, prach_resources->ra_RNTI);
sent_any = true;
Msg1_transmitted(ue_Mod_id, 0, NFAPI_SFNSF2SFN(sfn_sf), 0);
UE_mac_inst[ue_Mod_id].UE_mode[0] = RA_RESPONSE;
next_Mod_id = ue_Mod_id + 1;
//next_ra_frame = (rx_frame + 20)%1000;
next_ra_frame = 0;
}
//ue_prach_procedures(ue,proc,eNB_id,abstraction_flag,mode);
}
}
} // mode is PRACH
// Substitute call to phy_procedures Tx with call to phy_stub functions in order to trigger
// UE Tx procedures directly at the MAC layer, based on the received ul_config requests from the vnf (eNB).
// Generate UL_indications which correspond to UL traffic.
if (ul_config_req != NULL)
{ //&& UE_mac_inst[Mod_id].ul_config_req->ul_config_request_body.ul_config_pdu_list != NULL){
ul_config_req_UE_MAC(ul_config_req, NFAPI_SFNSF2SFN(sfn_sf), NFAPI_SFNSF2SF(sfn_sf), ue_Mod_id);
}
}
phy_procedures_UE_SL_RX(UE, proc);
}
else
{
LOG_I(MAC, "Skipping subframe select statement proxy SFN.SF: %d.%d\n",
NFAPI_SFNSF2SFN(sfn_sf), NFAPI_SFNSF2SF(sfn_sf));
if (ul_config_req != NULL)
{
LOG_I(MAC, "Skipping subframe select statement ul_config_req SFN.SF: %d.%d\n",
NFAPI_SFNSF2SFN(ul_config_req->sfn_sf), NFAPI_SFNSF2SF(ul_config_req->sfn_sf));
}
}
} //for (Mod_id=0; Mod_id<NB_UE_INST; Mod_id++)
if (UL_INFO->crc_ind.crc_indication_body.number_of_crcs > 0) {
//LOG_D(PHY,"UL_info->crc_ind.crc_indication_body.number_of_crcs:%d CRC_IND:SFN/SF:%d\n", UL_info->crc_ind.crc_indication_body.number_of_crcs, NFAPI_SFNSF2DEC(UL_info->crc_ind.sfn_sf));
//LOG_I(MAC, "ul_config_req_UE_MAC 2.2, SFN/SF of PNF counter:%d.%d, number_of_crcs: %d \n", timer_frame, timer_subframe, UL_INFO->crc_ind.crc_indication_body.number_of_crcs);
send_standalone_msg(UL_INFO, UL_INFO->crc_ind.header.message_id);
sent_any = true;
//LOG_I(MAC, "ul_config_req_UE_MAC 2.21 \n");
UL_INFO->crc_ind.crc_indication_body.number_of_crcs = 0;
}
if (UL_INFO->rx_ind.rx_indication_body.number_of_pdus > 0) {
//LOG_D(PHY,"UL_info->rx_ind.number_of_pdus:%d RX_IND:SFN/SF:%d\n", UL_info->rx_ind.rx_indication_body.number_of_pdus, NFAPI_SFNSF2DEC(UL_info->rx_ind.sfn_sf));
//LOG_I(MAC, "ul_config_req_UE_MAC 2.3, SFN/SF of PNF counter:%d.%d, number_of_pdus: %d \n", timer_frame, timer_subframe, UL_INFO->rx_ind.rx_indication_body.number_of_pdus);
send_standalone_msg(UL_INFO, UL_INFO->rx_ind.header.message_id);
sent_any = true;
for (uint8_t num_pdu = 0; num_pdu < UL_INFO->rx_ind.rx_indication_body.number_of_pdus; num_pdu++) {
free(UL_INFO->rx_ind.rx_indication_body.rx_pdu_list[num_pdu].data);
}
//LOG_I(MAC, "ul_config_req_UE_MAC 2.31 \n");
UL_INFO->rx_ind.rx_indication_body.number_of_pdus = 0;
}
if (UL_INFO->cqi_ind.cqi_indication_body.number_of_cqis > 0) {
send_standalone_msg(UL_INFO, UL_INFO->cqi_ind.header.message_id);
sent_any = true;
UL_INFO->cqi_ind.cqi_indication_body.number_of_cqis = 0;
}
if (UL_INFO->harq_ind.harq_indication_body.number_of_harqs > 0) {
//LOG_D(MAC, "ul_config_req_UE_MAC 2.4, SFN/SF of PNF counter:%d.%d, number_of_harqs: %d \n", timer_frame, timer_subframe, UL_INFO->harq_ind.harq_indication_body.number_of_harqs);
send_standalone_msg(UL_INFO, UL_INFO->harq_ind.header.message_id);
sent_any = true;
//LOG_I(MAC, "ul_config_req_UE_MAC 2.41 \n");
UL_INFO->harq_ind.harq_indication_body.number_of_harqs = 0;
}
if (UL_INFO->sr_ind.sr_indication_body.number_of_srs > 0) {
//LOG_I(MAC, "ul_config_req_UE_MAC 2.5, SFN/SF of PNF counter:%d.%d, number_of_srs: %d \n", timer_frame, timer_subframe, UL_INFO->sr_ind.sr_indication_body.number_of_srs);
send_standalone_msg(UL_INFO, UL_INFO->sr_ind.header.message_id);
sent_any = true;
//LOG_I(MAC, "ul_config_req_UE_MAC 2.51 \n");
UL_INFO->sr_ind.sr_indication_body.number_of_srs = 0;
}
// De-allocate memory of nfapi requests copies before next subframe round
if (dl_config_req_tx_req != NULL) {
if (dl_config_req_tx_req->dl_config_req->vendor_extension != NULL) {
free(dl_config_req_tx_req->dl_config_req->vendor_extension);
dl_config_req_tx_req->dl_config_req->vendor_extension = NULL;
}
if (dl_config_req_tx_req->dl_config_req->dl_config_request_body.dl_config_pdu_list != NULL) {
free(dl_config_req_tx_req->dl_config_req->dl_config_request_body.dl_config_pdu_list);
dl_config_req_tx_req->dl_config_req->dl_config_request_body.dl_config_pdu_list = NULL;
}
nfapi_free_tx_req_pdu_list(dl_config_req_tx_req->tx_req_pdu_list);
dl_config_req_tx_req->tx_req_pdu_list = NULL;
free(dl_config_req_tx_req->dl_config_req);
dl_config_req_tx_req->dl_config_req = NULL;
free(dl_config_req_tx_req);
dl_config_req_tx_req = NULL;
}
if (ul_config_req != NULL) {
if (ul_config_req->ul_config_request_body.ul_config_pdu_list != NULL) {
free(ul_config_req->ul_config_request_body.ul_config_pdu_list);
ul_config_req->ul_config_request_body.ul_config_pdu_list = NULL;
}
free(ul_config_req);
ul_config_req = NULL;
}
if (hi_dci0_req != NULL) {
if (hi_dci0_req->hi_dci0_request_body.hi_dci0_pdu_list != NULL) {
free(hi_dci0_req->hi_dci0_request_body.hi_dci0_pdu_list);
hi_dci0_req->hi_dci0_request_body.hi_dci0_pdu_list = NULL;
}
free(hi_dci0_req);
hi_dci0_req = NULL;
}
if (!sent_any)
{
send_standalone_dummy();
}
}
// Free UL_INFO messages
free(UL_INFO->cqi_ind.cqi_indication_body.cqi_raw_pdu_list);
UL_INFO->cqi_ind.cqi_indication_body.cqi_raw_pdu_list = NULL;
free(UL_INFO->cqi_ind.cqi_indication_body.cqi_pdu_list);
UL_INFO->cqi_ind.cqi_indication_body.cqi_pdu_list = NULL;
free(UL_INFO->sr_ind.sr_indication_body.sr_pdu_list);
UL_INFO->sr_ind.sr_indication_body.sr_pdu_list = NULL;
free(UL_INFO->harq_ind.harq_indication_body.harq_pdu_list);
UL_INFO->harq_ind.harq_indication_body.harq_pdu_list = NULL;
free(UL_INFO->crc_ind.crc_indication_body.crc_pdu_list);
UL_INFO->crc_ind.crc_indication_body.crc_pdu_list = NULL;
free(UL_INFO->rx_ind.rx_indication_body.rx_pdu_list);
UL_INFO->rx_ind.rx_indication_body.rx_pdu_list = NULL;
free(UL_INFO);
UL_INFO = NULL;
// thread finished
free(arg);
return NULL;
}
/*!
* \brief This is the UE thread for RX subframe n and TX subframe n+4.
* This thread performs the phy_procedures_UE_RX() on every received slot.
* then, if TX is enabled it performs TX for n+4.
* \param arg is a pointer to a \ref PHY_VARS_UE structure.
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
static void *UE_phy_stub_single_thread_rxn_txnp4(void *arg)
{
#if 0 // TODO: doesn't currently compile
thread_top_init("UE_phy_stub_thread_rxn_txnp4",1,870000L,1000000L,1000000L);
// for multipule UE's L2-emulator
//module_id_t Mod_id = 0;
//int init_ra_UE = -1; // This counter is used to initiate the RA of each UE in different SFrames
static __thread int UE_thread_rxtx_retval;
struct rx_tx_thread_data *rtd = arg;
if (rtd == NULL) {
LOG_E( MAC, "[SCHED][UE] rx_tx_thread_data *rtd: NULL pointer\n" );
exit_fun("nothing to add");
}
UE_rxtx_proc_t *proc = rtd->proc;
// settings for nfapi-L2-emulator mode
module_id_t ue_thread_id = rtd->ue_thread_id;
uint16_t ue_index = 0;
uint16_t ue_num = NB_UE_INST/NB_THREAD_INST+((NB_UE_INST%NB_THREAD_INST > ue_thread_id) ? 1 :0);
module_id_t ue_Mod_id;
PHY_VARS_UE *UE = NULL;
int ret;
uint8_t end_flag;
proc = &PHY_vars_UE_g[0][0]->proc.proc_rxtx[0];
phy_stub_ticking->num_single_thread[ue_thread_id] = -1;
UE = rtd->UE;
UL_INFO = (UL_IND_t *)malloc(sizeof(UL_IND_t));
UL_INFO->rx_ind.rx_indication_body.rx_pdu_list = calloc(NB_UE_INST, sizeof(nfapi_rx_indication_pdu_t));
UL_INFO->rx_ind.rx_indication_body.number_of_pdus = 0;
UL_INFO->crc_ind.crc_indication_body.crc_pdu_list = calloc(NB_UE_INST, sizeof(nfapi_crc_indication_pdu_t));
UL_INFO->crc_ind.crc_indication_body.number_of_crcs = 0;
UL_INFO->harq_ind.harq_indication_body.harq_pdu_list = calloc(NB_UE_INST, sizeof(nfapi_harq_indication_pdu_t));
UL_INFO->harq_ind.harq_indication_body.number_of_harqs = 0;
UL_INFO->sr_ind.sr_indication_body.sr_pdu_list = calloc(NB_UE_INST, sizeof(nfapi_sr_indication_pdu_t));
UL_INFO->sr_ind.sr_indication_body.number_of_srs = 0;
UL_INFO->cqi_ind.cqi_indication_body.cqi_pdu_list = calloc(NB_UE_INST, sizeof(nfapi_cqi_indication_pdu_t));
UL_INFO->cqi_ind.cqi_indication_body.cqi_raw_pdu_list = calloc(NB_UE_INST, sizeof(nfapi_cqi_indication_raw_pdu_t));
UL_INFO->cqi_ind.cqi_indication_body.number_of_cqis = 0;
if(ue_thread_id == 0) {
phy_stub_ticking->ticking_var = -1;
proc->subframe_rx=proc->sub_frame_start;
// Initializations for nfapi-L2-emulator mode
dl_config_req = NULL;
ul_config_req = NULL;
hi_dci0_req = NULL;
tx_req_pdu_list = NULL;
// waiting for all UE's threads set phy_stub_ticking->num_single_thread[ue_thread_id] = -1.
do {
end_flag = 1;
for(uint16_t i = 0; i< NB_THREAD_INST; i++) {
if(phy_stub_ticking->num_single_thread[i] == 0) {
end_flag = 0;
}
}
} while(end_flag == 0);
sync_var=0;
}
//PANOS: CAREFUL HERE!
wait_sync("UE_phy_stub_single_thread_rxn_txnp4");
while (!oai_exit) {
if(ue_thread_id == 0) {
if (pthread_mutex_lock(&phy_stub_ticking->mutex_ticking) != 0) {
LOG_E( MAC, "[SCHED][UE] error locking mutex for UE RXTX\n" );
exit_fun("nothing to add");
}
while (phy_stub_ticking->ticking_var < 0) {
// most of the time, the thread is waiting here
//pthread_cond_wait( &proc->cond_rxtx, &proc->mutex_rxtx )
LOG_D(MAC,"Waiting for ticking_var\n");
pthread_cond_wait( &phy_stub_ticking->cond_ticking, &phy_stub_ticking->mutex_ticking);
}
phy_stub_ticking->ticking_var--;
if (pthread_mutex_unlock(&phy_stub_ticking->mutex_ticking) != 0) {
LOG_E( MAC, "[SCHED][UE] error unlocking mutex for UE RXn_TXnp4\n" );
exit_fun("nothing to add");
}
proc->subframe_rx=timer_subframe;
proc->frame_rx = timer_frame;
// FDD and TDD tx timing settings.
// XXX:It is the result of timing adjustment in debug.
// It is necessary to investigate why this will work in the future.
proc->subframe_tx=(timer_subframe+sf_ahead)%10;
proc->frame_tx = proc->frame_rx + (proc->subframe_rx>(9-sf_ahead)?1:0);
//oai_subframe_ind(proc->frame_rx, proc->subframe_rx);
if (UE != NULL) {
if (UE->frame_parms.frame_type == FDD) {
oai_subframe_ind(proc->frame_rx, proc->subframe_rx);
} else {
oai_subframe_ind(proc->frame_tx, proc->subframe_tx);
}
} else {
// Default will be FDD
oai_subframe_ind(proc->frame_rx, proc->subframe_rx);
}
//Guessing that the next 4 lines are not needed for the phy_stub mode.
/*initRefTimes(t2);
initRefTimes(t3);
pickTime(current);
updateTimes(proc->gotIQs, &t2, 10000, "Delay to wake up UE_Thread_Rx (case 2)");*/
if (pthread_mutex_lock(&phy_stub_ticking->mutex_single_thread) != 0) {
LOG_E( MAC, "[SCHED][UE] error locking mutex for ue_thread_id %d (mutex_single_thread)\n",ue_thread_id);
exit_fun("nothing to add");
}
memset(&phy_stub_ticking->num_single_thread[0],0,sizeof(int)*NB_THREAD_INST);
pthread_cond_broadcast(&phy_stub_ticking->cond_single_thread);
if (pthread_mutex_unlock(&phy_stub_ticking->mutex_single_thread) != 0) {
LOG_E( MAC, "[SCHED][UE] error unlocking mutex for ue_thread_id %d (mutex_single_thread)\n",ue_thread_id);
exit_fun("nothing to add");
}
} else {
if (pthread_mutex_lock(&phy_stub_ticking->mutex_single_thread) != 0) {
LOG_E( MAC, "[SCHED][UE] error locking mutex for ue_thread_id %d (mutex_single_thread)\n",ue_thread_id);
exit_fun("nothing to add");
}
while (phy_stub_ticking->num_single_thread[ue_thread_id] < 0) {
// most of the time, the thread is waiting here
LOG_D(MAC,"Waiting for single_thread (ue_thread_id %d)\n",ue_thread_id);
pthread_cond_wait( &phy_stub_ticking->cond_single_thread, &phy_stub_ticking->mutex_single_thread);
}
if (pthread_mutex_unlock(&phy_stub_ticking->mutex_single_thread) != 0) {
LOG_E( MAC, "[SCHED][UE] error unlocking mutex for ue_thread_id %d (mutex_single_thread)\n",ue_thread_id);
exit_fun("nothing to add");
}
}
if (dl_config_req && tx_req_pdu_list) {
nfapi_dl_config_request_body_t* dl_config_req_body = &dl_config_req->dl_config_request_body;
for (int i = 0; i < dl_config_req_body->number_pdu; ++i) {
nfapi_dl_config_request_pdu_t* pdu = &dl_config_req_body->dl_config_pdu_list[i];
if (pdu->pdu_type == NFAPI_DL_CONFIG_DCI_DL_PDU_TYPE) {
i += 1;
AssertFatal(i < dl_config_req->dl_config_request_body.number_pdu,
"Need PDU following DCI at index %d, but not found\n",
i);
nfapi_dl_config_request_pdu_t *dlsch = &dl_config_req_body->dl_config_pdu_list[i];
if (dlsch->pdu_type != NFAPI_DL_CONFIG_DLSCH_PDU_TYPE) {
LOG_E(MAC, "expected DLSCH PDU at index %d\n", i);
continue;
}
dl_config_req_UE_MAC_dci(NFAPI_SFNSF2SFN(dl_config_req->sfn_sf),
NFAPI_SFNSF2SF(dl_config_req->sfn_sf),
pdu,
dlsch,
ue_num);
} else if (pdu->pdu_type == NFAPI_DL_CONFIG_BCH_PDU_TYPE) {
dl_config_req_UE_MAC_bch(NFAPI_SFNSF2SFN(dl_config_req->sfn_sf),
NFAPI_SFNSF2SF(dl_config_req->sfn_sf),
pdu,
ue_num);
} else if (pdu->pdu_type == NFAPI_DL_CONFIG_MCH_PDU_TYPE) {
dl_config_req_UE_MAC_mch(NFAPI_SFNSF2SFN(dl_config_req->sfn_sf),
NFAPI_SFNSF2SF(dl_config_req->sfn_sf),
pdu,
ue_num);
}
}
}
if (hi_dci0_req) {
nfapi_hi_dci0_request_body_t *hi_dci0_body = &hi_dci0_req->hi_dci0_request_body;
for (int i = 0; i < hi_dci0_body->number_of_dci + hi_dci0_body->number_of_hi; i++) {
nfapi_hi_dci0_request_pdu_t* pdu = &hi_dci0_body->hi_dci0_pdu_list[i];
hi_dci0_req_UE_MAC(NFAPI_SFNSF2SFN(hi_dci0_req->sfn_sf),
NFAPI_SFNSF2SF(hi_dci0_req->sfn_sf),
pdu,
ue_num);
}
}
//for (Mod_id=0; Mod_id<NB_UE_INST; Mod_id++) {
for (ue_index=0; ue_index < ue_num; ue_index++) {
ue_Mod_id = ue_thread_id + NB_THREAD_INST*ue_index;
UE = PHY_vars_UE_g[ue_Mod_id][0];
//LOG_D(MAC, "UE_phy_stub_single_thread_rxn_txnp4, NB_UE_INST:%d, Mod_id:%d \n", NB_UE_INST, Mod_id);
//UE = PHY_vars_UE_g[Mod_id][0];
lte_subframe_t sf_type = subframe_select( &UE->frame_parms, proc->subframe_rx);
if ((sf_type == SF_DL) ||
(UE->frame_parms.frame_type == FDD) ||
(sf_type == SF_S)) {
if (UE->frame_parms.frame_type == TDD) {
LOG_D(PHY, "TDD%d,%s: calling UE_RX\n",
UE->frame_parms.tdd_config,
(sf_type==SF_DL? "SF_DL" :
(sf_type==SF_UL? "SF_UL" :
(sf_type==SF_S ? "SF_S" : "UNKNOWN_SF_TYPE"))));
} else {
LOG_D(PHY, "%s,%s: calling UE_RX\n",
(UE->frame_parms.frame_type==FDD? "FDD":
(UE->frame_parms.frame_type==TDD? "TDD":"UNKNOWN_DUPLEX_MODE")),
(sf_type==SF_DL? "SF_DL" :
(sf_type==SF_UL? "SF_UL" :
(sf_type==SF_S ? "SF_S" : "UNKNOWN_SF_TYPE"))));
}
phy_procedures_UE_SL_RX(UE,proc);
if(NFAPI_MODE!=NFAPI_UE_STUB_PNF)
phy_procedures_UE_SL_TX(UE,proc);
}
#if UE_TIMING_TRACE
start_meas(&UE->generic_stat);
#endif
if (UE->mac_enabled==1) {
ret = ue_scheduler(ue_Mod_id,
proc->frame_rx,
proc->subframe_rx,
proc->frame_tx,
proc->subframe_tx,
subframe_select(&UE->frame_parms,proc->subframe_tx),
0,
0/*FIXME CC_id*/);
if ( ret != CONNECTION_OK) {
LOG_E( PHY, "[UE %"PRIu8"] Frame %"PRIu32", subframe %u %s\n",
UE->Mod_id, proc->frame_rx, proc->subframe_tx,get_connectionloss_errstr(ret) );
}
}
#if UE_TIMING_TRACE
stop_meas(&UE->generic_stat);
#endif
// Prepare the future Tx data
if ((subframe_select( &UE->frame_parms, proc->subframe_tx) == SF_UL) ||
(UE->frame_parms.frame_type == FDD) )
if (UE->mode != loop_through_memory) {
// We make the start of RA between consecutive UEs differ by 20 frames
//if ((UE_mac_inst[Mod_id].UE_mode[0] == PRACH && Mod_id == 0) || (UE_mac_inst[Mod_id].UE_mode[0] == PRACH && Mod_id>0 && proc->frame_rx >= UE_mac_inst[Mod_id-1].ra_frame + 20) ) {
if (UE_mac_inst[ue_Mod_id].UE_mode[0] == PRACH && ue_Mod_id == next_Mod_id) {
next_ra_frame++;
if(next_ra_frame > 500) {
// check if we have PRACH opportunity
if (is_prach_subframe(&UE->frame_parms,proc->frame_tx, proc->subframe_tx) && UE_mac_inst[ue_Mod_id].SI_Decoded == 1) {
// The one working strangely...
//if (is_prach_subframe(&UE->frame_parms,proc->frame_tx, proc->subframe_tx && Mod_id == (module_id_t) init_ra_UE) ) {
PRACH_RESOURCES_t *prach_resources = ue_get_rach(ue_Mod_id, 0, proc->frame_tx, 0, proc->subframe_tx);
if(prach_resources!=NULL ) {
UE_mac_inst[ue_Mod_id].ra_frame = proc->frame_rx;
LOG_D(MAC, "UE_phy_stub_thread_rxn_txnp4 before RACH, Mod_id: %d frame %d subframe %d\n", ue_Mod_id,proc->frame_tx, proc->subframe_tx);
fill_rach_indication_UE_MAC(ue_Mod_id, proc->frame_tx,proc->subframe_tx, UL_INFO, prach_resources->ra_PreambleIndex, prach_resources->ra_RNTI);
Msg1_transmitted(ue_Mod_id, 0, proc->frame_tx, 0);
UE_mac_inst[ue_Mod_id].UE_mode[0] = RA_RESPONSE;
next_Mod_id = ue_Mod_id + 1;
//next_ra_frame = (proc->frame_rx + 20)%1000;
next_ra_frame = 0;
}
//ue_prach_procedures(ue,proc,eNB_id,abstraction_flag,mode);
}
}
} // mode is PRACH
// Substitute call to phy_procedures Tx with call to phy_stub functions in order to trigger
// UE Tx procedures directly at the MAC layer, based on the received ul_config requests from the vnf (eNB).
// Generate UL_indications which correspond to UL traffic.
if(ul_config_req!=NULL) { //&& UE_mac_inst[Mod_id].ul_config_req->ul_config_request_body.ul_config_pdu_list != NULL){
ul_config_req_UE_MAC(ul_config_req, timer_frame, timer_subframe, ue_Mod_id);
}
}
phy_procedures_UE_SL_RX(UE,proc);
} //for (Mod_id=0; Mod_id<NB_UE_INST; Mod_id++)
phy_stub_ticking->num_single_thread[ue_thread_id] = -1;
// waiting for all UE's threads set phy_stub_ticking->num_single_thread[ue_thread_id] = -1.
if(ue_thread_id == 0) {
do {
end_flag = 1;
for(uint16_t i = 0; i< NB_THREAD_INST; i++) {
if(phy_stub_ticking->num_single_thread[i] == 0) {
end_flag = 0;
}
}
} while(end_flag == 0);
if (UL_INFO->crc_ind.crc_indication_body.number_of_crcs>0) {
//LOG_D(PHY,"UL_info->crc_ind.crc_indication_body.number_of_crcs:%d CRC_IND:SFN/SF:%d\n", UL_info->crc_ind.crc_indication_body.number_of_crcs, NFAPI_SFNSF2DEC(UL_info->crc_ind.sfn_sf));
//LOG_I(MAC, "ul_config_req_UE_MAC 2.2, SFN/SF of PNF counter:%d.%d, number_of_crcs: %d \n", timer_frame, timer_subframe, UL_INFO->crc_ind.crc_indication_body.number_of_crcs);
oai_nfapi_crc_indication(&UL_INFO->crc_ind);
//LOG_I(MAC, "ul_config_req_UE_MAC 2.21 \n");
UL_INFO->crc_ind.crc_indication_body.number_of_crcs = 0;
}
if (UL_INFO->rx_ind.rx_indication_body.number_of_pdus>0) {
//LOG_D(PHY,"UL_info->rx_ind.number_of_pdus:%d RX_IND:SFN/SF:%d\n", UL_info->rx_ind.rx_indication_body.number_of_pdus, NFAPI_SFNSF2DEC(UL_info->rx_ind.sfn_sf));
//LOG_I(MAC, "ul_config_req_UE_MAC 2.3, SFN/SF of PNF counter:%d.%d, number_of_pdus: %d \n", timer_frame, timer_subframe, UL_INFO->rx_ind.rx_indication_body.number_of_pdus);
oai_nfapi_rx_ind(&UL_INFO->rx_ind);
for(uint8_t num_pdu = 0; num_pdu < UL_INFO->rx_ind.rx_indication_body.number_of_pdus; num_pdu++) {
free(UL_INFO->rx_ind.rx_indication_body.rx_pdu_list[num_pdu].data);
}
//LOG_I(MAC, "ul_config_req_UE_MAC 2.31 \n");
UL_INFO->rx_ind.rx_indication_body.number_of_pdus = 0;
}
if (UL_INFO->cqi_ind.cqi_indication_body.number_of_cqis > 0) {
oai_nfapi_cqi_indication(&UL_INFO->cqi_ind);
UL_INFO->cqi_ind.cqi_indication_body.number_of_cqis = 0;
}
if(UL_INFO->harq_ind.harq_indication_body.number_of_harqs>0) {
//LOG_D(MAC, "ul_config_req_UE_MAC 2.4, SFN/SF of PNF counter:%d.%d, number_of_harqs: %d \n", timer_frame, timer_subframe, UL_INFO->harq_ind.harq_indication_body.number_of_harqs);
oai_nfapi_harq_indication(&UL_INFO->harq_ind);
//LOG_I(MAC, "ul_config_req_UE_MAC 2.41 \n");
UL_INFO->harq_ind.harq_indication_body.number_of_harqs =0;
}
if(UL_INFO->sr_ind.sr_indication_body.number_of_srs>0) {
//LOG_I(MAC, "ul_config_req_UE_MAC 2.5, SFN/SF of PNF counter:%d.%d, number_of_srs: %d \n", timer_frame, timer_subframe, UL_INFO->sr_ind.sr_indication_body.number_of_srs);
oai_nfapi_sr_indication(&UL_INFO->sr_ind);
//LOG_I(MAC, "ul_config_req_UE_MAC 2.51 \n");
UL_INFO->sr_ind.sr_indication_body.number_of_srs = 0;
}
// De-allocate memory of nfapi requests copies before next subframe round
if(dl_config_req!=NULL) {
if(dl_config_req->vendor_extension!=NULL) {
free(dl_config_req->vendor_extension);
dl_config_req->vendor_extension = NULL;
}
if(dl_config_req->dl_config_request_body.dl_config_pdu_list!=NULL) {
free(dl_config_req->dl_config_request_body.dl_config_pdu_list);
dl_config_req->dl_config_request_body.dl_config_pdu_list = NULL;
}
free(dl_config_req);
dl_config_req = NULL;
}
if(tx_req_pdu_list!=NULL) {
for (int i = 0; i < tx_req_num_elems; i++) {
for (int j = 0; j < tx_req_pdu_list[i].num_segments; j++) {
free(tx_req_pdu_list[i].segments[j].segment_data);
tx_req_pdu_list[i].segments[j].segment_data = NULL;
}
}
tx_req_num_elems = 0;
free(tx_req_pdu_list);
tx_req_pdu_list = NULL;
}
if(ul_config_req!=NULL) {
if(ul_config_req->ul_config_request_body.ul_config_pdu_list != NULL) {
free(ul_config_req->ul_config_request_body.ul_config_pdu_list);
ul_config_req->ul_config_request_body.ul_config_pdu_list = NULL;
}
free(ul_config_req);
ul_config_req = NULL;
}
if(hi_dci0_req!=NULL) {
if(hi_dci0_req->hi_dci0_request_body.hi_dci0_pdu_list!=NULL) {
free(hi_dci0_req->hi_dci0_request_body.hi_dci0_pdu_list);
hi_dci0_req->hi_dci0_request_body.hi_dci0_pdu_list = NULL;
}
free(hi_dci0_req);
hi_dci0_req = NULL;
}
}
}
// Free UL_INFO messages
free(UL_INFO->cqi_ind.cqi_indication_body.cqi_raw_pdu_list);
UL_INFO->cqi_ind.cqi_indication_body.cqi_raw_pdu_list = NULL;
free(UL_INFO->cqi_ind.cqi_indication_body.cqi_pdu_list);
UL_INFO->cqi_ind.cqi_indication_body.cqi_pdu_list = NULL;
free(UL_INFO->sr_ind.sr_indication_body.sr_pdu_list);
UL_INFO->sr_ind.sr_indication_body.sr_pdu_list = NULL;
free(UL_INFO->harq_ind.harq_indication_body.harq_pdu_list);
UL_INFO->harq_ind.harq_indication_body.harq_pdu_list = NULL;
free(UL_INFO->crc_ind.crc_indication_body.crc_pdu_list);
UL_INFO->crc_ind.crc_indication_body.crc_pdu_list = NULL;
free(UL_INFO->rx_ind.rx_indication_body.rx_pdu_list);
UL_INFO->rx_ind.rx_indication_body.rx_pdu_list = NULL;
free(UL_INFO);
UL_INFO = NULL;
#endif // disabled UE_phy_stub_single_thread_rxn_txnp4
// thread finished
free(arg);
return NULL;
}
/*!
* \brief This is the UE thread for RX subframe n and TX subframe n+4.
* This thread performs the phy_procedures_UE_RX() on every received slot.
* then, if TX is enabled it performs TX for n+4.
* \param arg is a pointer to a \ref PHY_VARS_UE structure.
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
static void *UE_phy_stub_thread_rxn_txnp4(void *arg)
{
#if 0
thread_top_init("UE_phy_stub_thread_rxn_txnp4",1,870000L,1000000L,1000000L);
module_id_t Mod_id = 0;
static __thread int UE_thread_rxtx_retval;
struct rx_tx_thread_data *rtd = arg;
UE_rxtx_proc_t *proc = rtd->proc;
PHY_VARS_UE *UE = rtd->UE;
phy_stub_ticking->ticking_var = -1;
proc->subframe_rx=proc->sub_frame_start;
// CAREFUL HERE!
wait_sync("UE_phy_stub_thread_rxn_txnp4");
while (!oai_exit) {
if (pthread_mutex_lock(&phy_stub_ticking->mutex_ticking) != 0) {
LOG_E( MAC, "[SCHED][UE] error locking mutex for UE RXTX\n" );
exit_fun("nothing to add");
}
while (phy_stub_ticking->ticking_var < 0) {
// most of the time, the thread is waiting here
//pthread_cond_wait( &proc->cond_rxtx, &proc->mutex_rxtx )
LOG_D(MAC,"Waiting for ticking_var\n");
pthread_cond_wait( &phy_stub_ticking->cond_ticking, &phy_stub_ticking->mutex_ticking);
}
phy_stub_ticking->ticking_var--;
if (pthread_mutex_unlock(&phy_stub_ticking->mutex_ticking) != 0) {
LOG_E( MAC, "[SCHED][UE] error unlocking mutex for UE RXn_TXnp4\n" );
exit_fun("nothing to add");
}
proc->subframe_rx=timer_subframe;
proc->frame_rx = timer_frame;
proc->subframe_tx=(timer_subframe+4)%10;
proc->frame_tx = proc->frame_rx + (proc->subframe_rx>5?1:0);
// Process Rx data for one sub-frame
lte_subframe_t sf_type = subframe_select( &UE->frame_parms, proc->subframe_rx);
if ((sf_type == SF_DL) ||
(UE->frame_parms.frame_type == FDD) ||
(sf_type == SF_S)) {
if (UE->frame_parms.frame_type == TDD) {
LOG_D(PHY, "TDD%d,%s: calling UE_RX\n",
UE->frame_parms.tdd_config,
(sf_type==SF_DL? "SF_DL" :
(sf_type==SF_UL? "SF_UL" :
(sf_type==SF_S ? "SF_S" : "UNKNOWN_SF_TYPE"))));
} else {
LOG_D(PHY, "%s,%s: calling UE_RX\n",
(UE->frame_parms.frame_type==FDD? "FDD":
(UE->frame_parms.frame_type==TDD? "TDD":"UNKNOWN_DUPLEX_MODE")),
(sf_type==SF_DL? "SF_DL" :
(sf_type==SF_UL? "SF_UL" :
(sf_type==SF_S ? "SF_S" : "UNKNOWN_SF_TYPE"))));
}
phy_procedures_UE_SL_RX(UE,proc);
oai_subframe_ind(timer_frame, timer_subframe);
if(dl_config_req!= NULL) {
AssertFatal(0, "dl_config_req_UE_MAC() not handled\n");
//dl_config_req_UE_MAC(dl_config_req, Mod_id);
}
//if(UE_mac_inst[Mod_id].hi_dci0_req!= NULL){
if (hi_dci0_req!=NULL && hi_dci0_req->hi_dci0_request_body.hi_dci0_pdu_list!=NULL) {
AssertFatal(0, "hi_dci0_req_UE_MAC() not handled\n");
//hi_dci0_req_UE_MAC(hi_dci0_req, Mod_id);
//if(UE_mac_inst[Mod_id].hi_dci0_req->hi_dci0_request_body.hi_dci0_pdu_list!=NULL){
free(hi_dci0_req->hi_dci0_request_body.hi_dci0_pdu_list);
hi_dci0_req->hi_dci0_request_body.hi_dci0_pdu_list = NULL;
//}
free(hi_dci0_req);
hi_dci0_req = NULL;
} else if(hi_dci0_req!=NULL) {
free(hi_dci0_req);
hi_dci0_req = NULL;
}
if (NFAPI_MODE!=NFAPI_UE_STUB_PNF)
phy_procedures_UE_SL_TX(UE,proc);
}
#if UE_TIMING_TRACE
start_meas(&UE->generic_stat);
#endif
if (UE->mac_enabled==1) {
int ret = ue_scheduler(UE->Mod_id,
proc->frame_rx,
proc->subframe_rx,
proc->frame_tx,
proc->subframe_tx,
subframe_select(&UE->frame_parms,proc->subframe_tx),
0,
0);
if (ret != CONNECTION_OK)
LOG_E( PHY, "[UE %"PRIu8"] Frame %"PRIu32", subframe %u %s\n",
UE->Mod_id, proc->frame_rx, proc->subframe_tx,get_connectionloss_errstr(ret) );
}
#if UE_TIMING_TRACE
stop_meas(&UE->generic_stat);
#endif
// Prepare the future Tx data
if ((subframe_select( &UE->frame_parms, proc->subframe_tx) == SF_UL) ||
(UE->frame_parms.frame_type == FDD) )
if (UE->mode != loop_through_memory) {
if ((UE_mac_inst[Mod_id].UE_mode[0] == PRACH) ) {
// check if we have PRACH opportunity
if (is_prach_subframe(&UE->frame_parms,proc->frame_tx, proc->subframe_tx)) {
PRACH_RESOURCES_t *prach_resources = ue_get_rach(Mod_id, 0, proc->frame_tx, 0, proc->subframe_tx);
if(prach_resources!=NULL) {
fill_rach_indication_UE_MAC(Mod_id, proc->frame_tx,proc->subframe_tx, UL_INFO, prach_resources->ra_PreambleIndex, prach_resources->ra_RNTI);
Msg1_transmitted(Mod_id, 0, proc->frame_tx, 0);
UE_mac_inst[Mod_id].UE_mode[0] = RA_RESPONSE;
}
//ue_prach_procedures(ue,proc,eNB_id,abstraction_flag,mode);
}
} // mode is PRACH
// Substitute call to phy_procedures Tx with call to phy_stub functions in order to trigger
// UE Tx procedures directly at the MAC layer, based on the received ul_config requests from the vnf (eNB).
// Generate UL_indications which correspond to UL traffic.
if(ul_config_req!= NULL && ul_config_req->ul_config_request_body.ul_config_pdu_list != NULL) {
//LOG_I(MAC, "UE_phy_stub_thread_rxn_txnp4 ul_config_req is not NULL \n");
ul_config_req_UE_MAC(ul_config_req, timer_frame, timer_subframe, Mod_id);
if(ul_config_req->ul_config_request_body.ul_config_pdu_list != NULL) {
free(ul_config_req->ul_config_request_body.ul_config_pdu_list);
ul_config_req->ul_config_request_body.ul_config_pdu_list = NULL;
}
free(ul_config_req);
ul_config_req = NULL;
} else if(ul_config_req!=NULL) {
free(ul_config_req);
ul_config_req = NULL;
}
}
phy_procedures_UE_SL_RX(UE,proc);
}
#endif // disabled
// thread finished
free(arg);
return NULL; //return &UE_thread_rxtx_retval;
}
/*!
* \brief This is the main UE thread.
* This thread controls the other three UE threads:
* - UE_thread_rxn_txnp4 (even subframes)
* - UE_thread_rxn_txnp4 (odd subframes)
* - UE_thread_synch
* \param arg unused
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
void write_dummy(PHY_VARS_UE *UE, openair0_timestamp timestamp) {
// we have to write to tell explicitly to the eNB, else it will wait for us forever
// we write the next subframe (always write in future of what we received)
//
struct complex16 v= {0};
void *samplesVoid[UE->frame_parms.nb_antennas_tx];
for ( int i=0; i < UE->frame_parms.nb_antennas_tx; i++)
samplesVoid[i]=(void *)&v;
AssertFatal( 1 == UE->rfdevice.trx_write_func(&UE->rfdevice,
timestamp+2*UE->frame_parms.samples_per_tti,
samplesVoid,
1,
UE->frame_parms.nb_antennas_tx,
1),"");
}
void *UE_thread(void *arg)
{
PHY_VARS_UE *UE = (PHY_VARS_UE *) arg;
// int tx_enabled = 0;
int dummy_rx[UE->frame_parms.nb_antennas_rx][UE->frame_parms.samples_per_tti] __attribute__((aligned(32)));
openair0_timestamp timestamp,timestamp1;
void *rxp[NB_ANTENNAS_RX], *txp[NB_ANTENNAS_TX];
int start_rx_stream = 0;
int i;
int th_id;
static uint8_t thread_idx = 0;
int ret;
cpu_set_t cpuset;
CPU_ZERO(&cpuset);
if ( threads.main != -1 )
CPU_SET(threads.main, &cpuset);
init_thread(100000, 500000, FIFO_PRIORITY, &cpuset, "UHD Threads");
/*
while (sync_var<0)
pthread_cond_wait(&sync_cond, &sync_mutex);
pthread_mutex_unlock(&sync_mutex);
*/
wait_sync("UE thread");
#ifdef NAS_UE
MessageDef *message_p;
message_p = itti_alloc_new_message(TASK_NAS_UE, INITIALIZE_MESSAGE);
itti_send_msg_to_task (TASK_NAS_UE, UE->Mod_id + NB_eNB_INST, message_p);
#endif
int sub_frame=-1;
//int cumulated_shift=0;
if (UE->rfdevice.trx_start_func(&UE->rfdevice) != 0 ) {
LOG_E(HW,"Could not start the device\n");
oai_exit=1;
}
while (!oai_exit) {
if (IS_SOFTMODEM_BASICSIM)
while (!(UE->proc.instance_cnt_synch < 0)) {
printf("ue sync not ready\n");
usleep(500*1000);
}
AssertFatal ( 0== pthread_mutex_lock(&UE->proc.mutex_synch), "");
int instance_cnt_synch = UE->proc.instance_cnt_synch;
int is_synchronized = UE->is_synchronized;
AssertFatal ( 0== pthread_mutex_unlock(&UE->proc.mutex_synch), "");
if (is_synchronized == 0) {
if (instance_cnt_synch < 0) { // we can invoke the synch
// grab 10 ms of signal and wakeup synch thread
if (UE->mode != loop_through_memory) {
if (IS_SOFTMODEM_RFSIM ) {
for(int sf=0; sf<10; sf++) {
for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++)
rxp[i] = (void *)&UE->common_vars.rxdata[i][UE->frame_parms.samples_per_tti*sf];
AssertFatal(UE->frame_parms.samples_per_tti == UE->rfdevice.trx_read_func(&UE->rfdevice,
×tamp,
rxp,
UE->frame_parms.samples_per_tti,
UE->frame_parms.nb_antennas_rx), "");
write_dummy(UE, timestamp);
}
} else {
for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++)
rxp[i] = (void *)&UE->common_vars.rxdata[i][0];
AssertFatal( UE->frame_parms.samples_per_tti*10 ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
×tamp,
rxp,
UE->frame_parms.samples_per_tti*10,
UE->frame_parms.nb_antennas_rx), "");
}
}
AssertFatal ( 0== pthread_mutex_lock(&UE->proc.mutex_synch), "");
instance_cnt_synch = ++UE->proc.instance_cnt_synch;
if (instance_cnt_synch == 0) {
AssertFatal( 0 == pthread_cond_signal(&UE->proc.cond_synch), "");
} else {
LOG_E( PHY, "[SCHED][UE] UE sync thread busy!!\n" );
exit_fun("nothing to add");
}
AssertFatal ( 0== pthread_mutex_unlock(&UE->proc.mutex_synch), "");
} else {
#if OAISIM
(void)dummy_rx; /* avoid gcc warnings */
usleep(500);
#else
// grab 10 ms of signal into dummy buffer
if (UE->mode != loop_through_memory) {
for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++)
rxp[i] = (void *)&dummy_rx[i][0];
for (int sf=0; sf<10; sf++) {
// printf("Reading dummy sf %d\n",sf);
UE->rfdevice.trx_read_func(&UE->rfdevice,
×tamp,
rxp,
UE->frame_parms.samples_per_tti,
UE->frame_parms.nb_antennas_rx);
if (IS_SOFTMODEM_RFSIM )
write_dummy(UE, timestamp);
}
}
#endif
}
} // UE->is_synchronized==0
else {
if (start_rx_stream==0) {
start_rx_stream=1;
if (UE->mode != loop_through_memory) {
if (UE->no_timing_correction==0) {
LOG_I(PHY,"Resynchronizing RX by %d samples (mode = %d)\n",UE->rx_offset,UE->mode);
while ( UE->rx_offset ) {
size_t s=min(UE->rx_offset,UE->frame_parms.samples_per_tti);
AssertFatal(s == UE->rfdevice.trx_read_func(&UE->rfdevice,
×tamp,
(void **)UE->common_vars.rxdata,
s,
UE->frame_parms.nb_antennas_rx),"");
if (IS_SOFTMODEM_RFSIM )
write_dummy(UE, timestamp);
UE->rx_offset-=s;
}
}
UE->rx_offset=0;
UE->time_sync_cell=0;
//UE->proc.proc_rxtx[0].frame_rx++;
//UE->proc.proc_rxtx[1].frame_rx++;
for (th_id=0; th_id < RX_NB_TH; th_id++) {
UE->proc.proc_rxtx[th_id].frame_rx++;
}
// read in first symbol
AssertFatal (UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0 ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
×tamp,
(void **)UE->common_vars.rxdata,
UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0,
UE->frame_parms.nb_antennas_rx),"");
slot_fep(UE,0, 0, 0, 0, 0);
} //UE->mode != loop_through_memory
else
rt_sleep_ns(1000*1000);
} else {
sub_frame++;
sub_frame%=10;
UE_rxtx_proc_t *proc = &UE->proc.proc_rxtx[thread_idx];
// update thread index for received subframe
UE->current_thread_id[sub_frame] = thread_idx;
if (IS_SOFTMODEM_BASICSIM || IS_SOFTMODEM_RFSIM ) {
int t;
for (t = 0; t < 2; t++) {
UE_rxtx_proc_t *proc = &UE->proc.proc_rxtx[t];
pthread_mutex_lock(&proc->mutex_rxtx);
while (proc->instance_cnt_rxtx >= 0) pthread_cond_wait( &proc->cond_rxtx, &proc->mutex_rxtx );
pthread_mutex_unlock(&proc->mutex_rxtx);
}
usleep(300);
}
LOG_D(PHY,"Process Subframe %d thread Idx %d \n", sub_frame, UE->current_thread_id[sub_frame]);
thread_idx++;
if(thread_idx>=RX_NB_TH)
thread_idx = 0;
if (UE->mode != loop_through_memory) {
for (i=0; i<UE->frame_parms.nb_antennas_rx; i++)
rxp[i] = (void *)&UE->common_vars.rxdata[i][UE->frame_parms.ofdm_symbol_size+
UE->frame_parms.nb_prefix_samples0+
sub_frame*UE->frame_parms.samples_per_tti];
for (i=0; i<UE->frame_parms.nb_antennas_tx; i++)
txp[i] = (void *)&UE->common_vars.txdata[i][((sub_frame+2)%10)*UE->frame_parms.samples_per_tti];
int readBlockSize, writeBlockSize;
if (sub_frame<9) {
readBlockSize=UE->frame_parms.samples_per_tti;
writeBlockSize=UE->frame_parms.samples_per_tti;
} else {
// set TO compensation to zero
UE->rx_offset_diff = 0;
// compute TO compensation that should be applied for this frame
if (UE->no_timing_correction == 0) {
if ( UE->rx_offset < 5*UE->frame_parms.samples_per_tti &&
UE->rx_offset > 0 )
UE->rx_offset_diff = -1 ;
if ( UE->rx_offset > 5*UE->frame_parms.samples_per_tti &&
UE->rx_offset < 10*UE->frame_parms.samples_per_tti )
UE->rx_offset_diff = 1;
}
LOG_D(PHY,"AbsSubframe %d.%d SET rx_off_diff to %d rx_offset %d \n",proc->frame_rx,sub_frame,UE->rx_offset_diff,UE->rx_offset);
readBlockSize=UE->frame_parms.samples_per_tti -
UE->frame_parms.ofdm_symbol_size -
UE->frame_parms.nb_prefix_samples0 -
UE->rx_offset_diff;
writeBlockSize=UE->frame_parms.samples_per_tti -
UE->rx_offset_diff;
}
AssertFatal(readBlockSize ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
×tamp,
rxp,
readBlockSize,
UE->frame_parms.nb_antennas_rx),"");
AssertFatal( writeBlockSize ==
UE->rfdevice.trx_write_func(&UE->rfdevice,
timestamp+
(2*UE->frame_parms.samples_per_tti) -
UE->frame_parms.ofdm_symbol_size-UE->frame_parms.nb_prefix_samples0 -
openair0_cfg[0].tx_sample_advance,
txp,
writeBlockSize,
UE->frame_parms.nb_antennas_tx,
1),"");
if( sub_frame==9) {
// read in first symbol of next frame and adjust for timing drift
int first_symbols=writeBlockSize-readBlockSize;
if ( first_symbols > 0 )
AssertFatal(first_symbols ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
×tamp1,
(void **)UE->common_vars.rxdata,
first_symbols,
UE->frame_parms.nb_antennas_rx),"");
if ( first_symbols <0 )
LOG_E(PHY,"can't compensate: diff =%d\n", first_symbols);
}
pickTime(gotIQs);
/* no timeout in IS_SOFTMODEM_BASICSIM or IS_SOFTMODEM_RFSIM mode */
if (IS_SOFTMODEM_BASICSIM || IS_SOFTMODEM_RFSIM) {
ret = pthread_mutex_lock(&proc->mutex_rxtx);
} else {
struct timespec tv;
if (clock_gettime(CLOCK_REALTIME, &tv) != 0) {
perror("clock_gettime");
exit(1);
}
tv.tv_nsec += 10*1000;
if (tv.tv_nsec >= 1000 * 1000 * 1000) {
tv.tv_sec++;
tv.tv_nsec -= 1000 * 1000 * 1000;
}
ret = pthread_mutex_timedlock(&proc->mutex_rxtx, &tv);
}
// operate on thread sf mod 2
if (ret != 0) {
if (ret == ETIMEDOUT) {
LOG_E(PHY,"Missed real time\n");
continue;
} else {
LOG_E(PHY,"System error %s (%d)\n",strerror(errno),errno);
abort();
}
}
// usleep(3000);
if(sub_frame == 0) {
//UE->proc.proc_rxtx[0].frame_rx++;
//UE->proc.proc_rxtx[1].frame_rx++;
for (th_id=0; th_id < RX_NB_TH; th_id++) {
UE->proc.proc_rxtx[th_id].frame_rx++;
}
}
//UE->proc.proc_rxtx[0].gotIQs=readTime(gotIQs);
//UE->proc.proc_rxtx[1].gotIQs=readTime(gotIQs);
for (th_id=0; th_id < RX_NB_TH; th_id++) {
UE->proc.proc_rxtx[th_id].gotIQs=readTime(gotIQs);
}
proc->subframe_rx=sub_frame;
proc->subframe_tx=(sub_frame+4)%10;
proc->frame_tx = proc->frame_rx + (proc->subframe_rx>5?1:0);
proc->timestamp_tx = timestamp+
(4*UE->frame_parms.samples_per_tti)-
UE->frame_parms.ofdm_symbol_size-UE->frame_parms.nb_prefix_samples0;
proc->instance_cnt_rxtx++;
LOG_D( PHY, "[SCHED][UE %d] UE RX instance_cnt_rxtx %d subframe %d !!\n", UE->Mod_id, proc->instance_cnt_rxtx,proc->subframe_rx);
T(T_UE_MASTER_TICK, T_INT(0), T_INT(proc->frame_rx%1024), T_INT(proc->subframe_rx));
AssertFatal (pthread_cond_signal(&proc->cond_rxtx) ==0,"");
AssertFatal(pthread_mutex_unlock(&proc->mutex_rxtx) ==0,"");
initRefTimes(t1);
initStaticTime(lastTime);
updateTimes(lastTime, &t1, 20000, "Delay between two IQ acquisitions (case 1)");
pickStaticTime(lastTime);
} else {
printf("Processing subframe %d",proc->subframe_rx);
getchar();
}
} // start_rx_stream==1
} // UE->is_synchronized==1
} // while !oai_exit
return NULL;
}
/*!
* \brief Initialize the UE theads.
* Creates the UE threads:
* - UE_thread_rxtx0
* - UE_thread_rxtx1
* - UE_thread_synch
* - UE_thread_fep_slot0
* - UE_thread_fep_slot1
* - UE_thread_dlsch_proc_slot0
* - UE_thread_dlsch_proc_slot1
* and the locking between them.
*/
void init_UE_threads(int inst)
{
struct rx_tx_thread_data *rtd;
PHY_VARS_UE *UE;
AssertFatal(PHY_vars_UE_g!=NULL,"PHY_vars_UE_g is NULL\n");
AssertFatal(PHY_vars_UE_g[inst]!=NULL,"PHY_vars_UE_g[inst] is NULL\n");
AssertFatal(PHY_vars_UE_g[inst][0]!=NULL,"PHY_vars_UE_g[inst][0] is NULL\n");
UE = PHY_vars_UE_g[inst][0];
pthread_attr_init (&UE->proc.attr_ue);
pthread_attr_setstacksize(&UE->proc.attr_ue,8192);//5*PTHREAD_STACK_MIN);
pthread_mutex_init(&UE->proc.mutex_synch,NULL);
pthread_cond_init(&UE->proc.cond_synch,NULL);
UE->proc.instance_cnt_synch = -1;
UE->is_synchronized = 0;
// the threads are not yet active, therefore access is allowed without locking
int nb_threads=RX_NB_TH;
for (int i=0; i<nb_threads; i++) {
rtd = calloc(1, sizeof(struct rx_tx_thread_data));
if (rtd == NULL) abort();
rtd->UE = UE;
rtd->proc = &UE->proc.proc_rxtx[i];
pthread_mutex_init(&UE->proc.proc_rxtx[i].mutex_rxtx,NULL);
pthread_cond_init(&UE->proc.proc_rxtx[i].cond_rxtx,NULL);
UE->proc.proc_rxtx[i].instance_cnt_rxtx = -1;
UE->proc.proc_rxtx[i].sub_frame_start=i;
UE->proc.proc_rxtx[i].sub_frame_step=nb_threads;
printf("Init_UE_threads rtd %d proc %d nb_threads %d i %d\n",rtd->proc->sub_frame_start, UE->proc.proc_rxtx[i].sub_frame_start,nb_threads, i);
pthread_create(&UE->proc.proc_rxtx[i].pthread_rxtx, NULL, UE_thread_rxn_txnp4, rtd);
#ifdef UE_SLOT_PARALLELISATION
//pthread_mutex_init(&UE->proc.proc_rxtx[i].mutex_slot0_dl_processing,NULL);
//pthread_cond_init(&UE->proc.proc_rxtx[i].cond_slot0_dl_processing,NULL);
//pthread_create(&UE->proc.proc_rxtx[i].pthread_slot0_dl_processing,NULL,UE_thread_slot0_dl_processing, rtd);
pthread_mutex_init(&UE->proc.proc_rxtx[i].mutex_slot1_dl_processing,NULL);
pthread_cond_init(&UE->proc.proc_rxtx[i].cond_slot1_dl_processing,NULL);
pthread_create(&UE->proc.proc_rxtx[i].pthread_slot1_dl_processing,NULL,UE_thread_slot1_dl_processing, rtd);
#endif
}
pthread_create(&UE->proc.pthread_synch,NULL,UE_thread_synch,(void *)UE);
}
/*!
* \brief Initialize the UE theads.
* Creates the UE threads:
* - UE_thread_rxtx0
* - UE_thread_synch
* - UE_thread_fep_slot0
* - UE_thread_fep_slot1
* - UE_thread_dlsch_proc_slot0
* - UE_thread_dlsch_proc_slot1
* and the locking between them.
*/
void init_UE_single_thread_stub(int nb_inst)
{
struct rx_tx_thread_data *rtd;
PHY_VARS_UE *UE;
for (int i=0; i<nb_inst; i++) {
AssertFatal(PHY_vars_UE_g!=NULL,"PHY_vars_UE_g is NULL\n");
AssertFatal(PHY_vars_UE_g[i]!=NULL,"PHY_vars_UE_g[inst] is NULL\n");
AssertFatal(PHY_vars_UE_g[i][0]!=NULL,"PHY_vars_UE_g[inst][0] is NULL\n");
if(NFAPI_MODE==NFAPI_UE_STUB_PNF || NFAPI_MODE_STANDALONE_PNF) {
#ifdef NAS_UE
MessageDef *message_p;
message_p = itti_alloc_new_message(TASK_NAS_UE, INITIALIZE_MESSAGE);
itti_send_msg_to_task (TASK_NAS_UE, i + NB_eNB_INST, message_p);
#endif
}
}
UE = PHY_vars_UE_g[0][0];
pthread_attr_init (&UE->proc.attr_ue);
pthread_attr_setstacksize(&UE->proc.attr_ue,8192);//5*PTHREAD_STACK_MIN);
// Don't need synch for phy_stub mode
//pthread_mutex_init(&UE->proc.mutex_synch,NULL);
//pthread_cond_init(&UE->proc.cond_synch,NULL);
// the threads are not yet active, therefore access is allowed without locking
// In phy_stub_UE mode due to less heavy processing operations we don't need two threads
//int nb_threads=RX_NB_TH;
int nb_threads=1;
void* (*task_func)(void*);
if (NFAPI_MODE == NFAPI_MODE_STANDALONE_PNF) {
task_func = UE_phy_stub_standalone_pnf_task;
} else {
task_func = UE_phy_stub_single_thread_rxn_txnp4;
}
for(uint16_t ue_thread_id = 0; ue_thread_id < NB_THREAD_INST; ue_thread_id++) {
UE = PHY_vars_UE_g[ue_thread_id][0];
for (int i=0; i<nb_threads; i++) {
rtd = calloc(1, sizeof(struct rx_tx_thread_data));
if (rtd == NULL) abort();
rtd->UE = UE;
rtd->proc = &UE->proc.proc_rxtx[i];
rtd->ue_thread_id = ue_thread_id;
pthread_mutex_init(&UE->proc.proc_rxtx[i].mutex_rxtx,NULL);
pthread_cond_init(&UE->proc.proc_rxtx[i].cond_rxtx,NULL);
UE->proc.proc_rxtx[i].sub_frame_start=i;
UE->proc.proc_rxtx[i].sub_frame_step=nb_threads;
printf("Init_UE_threads rtd %d proc %d nb_threads %d i %d\n",rtd->proc->sub_frame_start, UE->proc.proc_rxtx[i].sub_frame_start,nb_threads, i);
pthread_create(&UE->proc.proc_rxtx[i].pthread_rxtx, NULL, task_func, rtd);
pthread_setname_np(UE->proc.proc_rxtx[i].pthread_rxtx, "oai:ue-phy");
}
}
// Remove thread for UE_sync in phy_stub_UE mode.
//pthread_create(&UE->proc.pthread_synch,NULL,UE_thread_synch,(void*)UE);
}
/*!
* \brief Initialize the UE theads.
* Creates the UE threads:
* - UE_thread_rxtx0
* - UE_thread_synch
* - UE_thread_fep_slot0
* - UE_thread_fep_slot1
* - UE_thread_dlsch_proc_slot0
* - UE_thread_dlsch_proc_slot1
* and the locking between them.
*/
void init_UE_threads_stub(int inst)
{
struct rx_tx_thread_data *rtd;
PHY_VARS_UE *UE;
AssertFatal(PHY_vars_UE_g!=NULL,"PHY_vars_UE_g is NULL\n");
AssertFatal(PHY_vars_UE_g[inst]!=NULL,"PHY_vars_UE_g[inst] is NULL\n");
AssertFatal(PHY_vars_UE_g[inst][0]!=NULL,"PHY_vars_UE_g[inst][0] is NULL\n");
UE = PHY_vars_UE_g[inst][0];
pthread_attr_init (&UE->proc.attr_ue);
pthread_attr_setstacksize(&UE->proc.attr_ue,8192);//5*PTHREAD_STACK_MIN);
// Don't need synch for phy_stub mode
//pthread_mutex_init(&UE->proc.mutex_synch,NULL);
//pthread_cond_init(&UE->proc.cond_synch,NULL);
// the threads are not yet active, therefore access is allowed without locking
// In phy_stub_UE mode due to less heavy processing operations we don't need two threads
//int nb_threads=RX_NB_TH;
int nb_threads=1;
for (int i=0; i<nb_threads; i++) {
rtd = calloc(1, sizeof(struct rx_tx_thread_data));
if (rtd == NULL) abort();
rtd->UE = UE;
rtd->proc = &UE->proc.proc_rxtx[i];
pthread_mutex_init(&UE->proc.proc_rxtx[i].mutex_rxtx,NULL);
pthread_cond_init(&UE->proc.proc_rxtx[i].cond_rxtx,NULL);
UE->proc.proc_rxtx[i].sub_frame_start=i;
UE->proc.proc_rxtx[i].sub_frame_step=nb_threads;
printf("Init_UE_threads rtd %d proc %d nb_threads %d i %d\n",rtd->proc->sub_frame_start, UE->proc.proc_rxtx[i].sub_frame_start,nb_threads, i);
pthread_create(&UE->proc.proc_rxtx[i].pthread_rxtx, NULL, UE_phy_stub_thread_rxn_txnp4, rtd);
}
// Remove thread for UE_sync in phy_stub_UE mode.
//pthread_create(&UE->proc.pthread_synch,NULL,UE_thread_synch,(void*)UE);
}
#ifdef OPENAIR2
void fill_ue_band_info(void)
{
LTE_UE_EUTRA_Capability_t *UE_EUTRA_Capability = UE_rrc_inst[0].UECap->UE_EUTRA_Capability;
int i,j;
bands_to_scan.nbands = UE_EUTRA_Capability->rf_Parameters.supportedBandListEUTRA.list.count;
for (i=0; i<bands_to_scan.nbands; i++) {
for (j=0; j<sizeof (eutra_bands) / sizeof (eutra_bands[0]); j++)
if (eutra_bands[j].band == UE_EUTRA_Capability->rf_Parameters.supportedBandListEUTRA.list.array[i]->bandEUTRA) {
memcpy(&bands_to_scan.band_info[i],
&eutra_bands[j],
sizeof(eutra_band_t));
printf("Band %d (%lu) : DL %u..%u Hz, UL %u..%u Hz, Duplex %s \n",
bands_to_scan.band_info[i].band,
UE_EUTRA_Capability->rf_Parameters.supportedBandListEUTRA.list.array[i]->bandEUTRA,
bands_to_scan.band_info[i].dl_min,
bands_to_scan.band_info[i].dl_max,
bands_to_scan.band_info[i].ul_min,
bands_to_scan.band_info[i].ul_max,
(bands_to_scan.band_info[i].frame_type==FDD) ? "FDD" : "TDD");
break;
}
}
}
#endif
int setup_ue_buffers(PHY_VARS_UE **phy_vars_ue,
openair0_config_t *openair0_cfg)
{
int i, CC_id;
LTE_DL_FRAME_PARMS *frame_parms;
for (CC_id=0; CC_id<MAX_NUM_CCs; CC_id++) {
AssertFatal( phy_vars_ue[CC_id] !=0, "");
frame_parms = &(phy_vars_ue[CC_id]->frame_parms);
// replace RX signal buffers with mmaped HW versions
rxdata = (int32_t **)malloc16( frame_parms->nb_antennas_rx*sizeof(int32_t *) );
txdata = (int32_t **)malloc16( frame_parms->nb_antennas_tx*sizeof(int32_t *) );
for (i=0; i<frame_parms->nb_antennas_rx; i++) {
LOG_I(PHY, "Mapping UE CC_id %d, rx_ant %d, freq %lu on card %d, chain %d\n",
CC_id, i, downlink_frequency[CC_id][i], phy_vars_ue[CC_id]->rf_map.card, (phy_vars_ue[CC_id]->rf_map.chain)+i );
free( phy_vars_ue[CC_id]->common_vars.rxdata[i] );
rxdata[i] = (int32_t *)malloc16_clear( 307200*sizeof(int32_t) );
phy_vars_ue[CC_id]->common_vars.rxdata[i] = rxdata[i]; // what about the "-N_TA_offset" ? // N_TA offset for TDD
}
for (i=0; i<frame_parms->nb_antennas_tx; i++) {
LOG_I(PHY, "Mapping UE CC_id %d, tx_ant %d, freq %lu on card %d, chain %d\n",
CC_id, i, downlink_frequency[CC_id][i], phy_vars_ue[CC_id]->rf_map.card, (phy_vars_ue[CC_id]->rf_map.chain)+i );
free( phy_vars_ue[CC_id]->common_vars.txdata[i] );
txdata[i] = (int32_t *)malloc16_clear( 307200*sizeof(int32_t) );
phy_vars_ue[CC_id]->common_vars.txdata[i] = txdata[i];
}
// rxdata[x] points now to the same memory region as phy_vars_ue[CC_id]->common_vars.rxdata[x]
// txdata[x] points now to the same memory region as phy_vars_ue[CC_id]->common_vars.txdata[x]
// be careful when releasing memory!
// because no "release_ue_buffers"-function is available, at least rxdata and txdata memory will leak (only some bytes)
}
return 0;
}
// Panos: This timer thread is used only in the phy_stub mode as an independent timer
// which will be ticking and provide the SFN/SF values that will be used from the UE threads
// playing the role of nfapi-pnf.
//02/02/2018
static void *timer_thread( void *param )
{
thread_top_init("timer_thread",1,870000L,1000000L,1000000L);
timer_subframe =9;
timer_frame =1023;
//phy_stub_ticking = (SF_ticking*)malloc(sizeof(SF_ticking));
phy_stub_ticking->ticking_var = -1;
PHY_VARS_UE *UE;
UE = PHY_vars_UE_g[0][0];
//double t_diff;
int external_timer = 0;
wait_sync("timer_thread");
opp_enabled = 1;
// first check if we are receiving timing indications
if(NFAPI_MODE==NFAPI_UE_STUB_OFFNET) {
usleep(10000);
if (UE->instance_cnt_timer > 0) {
external_timer = 1;
int absSFm1 = ((emulator_absSF+10239)%10240);
timer_frame = absSFm1/10;
timer_subframe = absSFm1%10;
pthread_mutex_lock(&UE->timer_mutex);
UE->instance_cnt_timer = -1;
pthread_mutex_unlock(&UE->timer_mutex);
LOG_I(PHY,"Running with external timer\n");
} else LOG_I(PHY,"Running with internal timer\n");
}
struct timespec t_start;
struct timespec t_now;
struct timespec t_sleep;
uint64_t T_0;
uint64_t T_now;
uint64_t T_next_SF;
uint64_t T_sleep;
uint64_t sf_cnt = 0; //Total Subframe counter
clock_gettime(CLOCK_MONOTONIC, &t_start);
T_0 = (uint64_t) t_start.tv_sec*1000000000 + t_start.tv_nsec;
LOG_D(MAC, "timer_thread(), T_0 value: %" PRId64 "\n", T_0);
while (!oai_exit) {
// these are local subframe/frame counters to check that we are in synch with the fronthaul timing.
// They are set on the first rx/tx in the underly FH routines.
if (timer_subframe==9) {
timer_subframe=0;
timer_frame++;
timer_frame&=1023;
} else {
timer_subframe++;
}
//AssertFatal( 0 == pthread_cond_signal(&phy_stub_ticking->cond_ticking), "");
AssertFatal(pthread_mutex_lock(&phy_stub_ticking->mutex_ticking) ==0,"");
phy_stub_ticking->ticking_var++;
// This should probably be a call to pthread_cond_broadcast when we introduce support for multiple UEs (threads)
if(phy_stub_ticking->ticking_var == 0) {
//AssertFatal(phy_stub_ticking->ticking_var == 0,"phy_stub_ticking->ticking_var = %d",
//phy_stub_ticking->ticking_var);
if (pthread_cond_signal(&phy_stub_ticking->cond_ticking) != 0) {
//LOG_E( PHY, "[SCHED][UE %d] ERROR pthread_cond_signal for UE RX thread\n", UE->Mod_id);
LOG_E( PHY, "timer_thread ERROR pthread_cond_signal for UE_thread\n");
exit_fun("nothing to add");
}
} else
LOG_D(MAC, "timer_thread() Timing problem! ticking_var value:%d \n \n \n", phy_stub_ticking->ticking_var);
AssertFatal(pthread_mutex_unlock(&phy_stub_ticking->mutex_ticking) ==0,"");
start_meas(&UE->timer_stats);
//clock_gettime(CLOCK_PROCESS_CPUTIME_ID, &start); // get initial time-stamp
if (external_timer == 0) {
clock_gettime(CLOCK_MONOTONIC, &t_now);
sf_cnt++;
T_next_SF = T_0 + sf_cnt*1000000;
T_now =(uint64_t) t_now.tv_sec*1000000000 + t_now.tv_nsec;
if(T_now > T_next_SF) {
t_sleep.tv_sec =0;
t_sleep.tv_nsec =0;
} else {
T_sleep = T_next_SF - T_now;
t_sleep.tv_sec =0;
t_sleep.tv_nsec = (__syscall_slong_t) T_sleep;
}
nanosleep(&t_sleep, (struct timespec *)NULL);
UE_tport_t pdu;
pdu.header.packet_type = TTI_SYNC;
pdu.header.absSF = (timer_frame*10)+timer_subframe;
if (NFAPI_MODE != NFAPI_UE_STUB_PNF && NFAPI_MODE != NFAPI_MODE_STANDALONE_PNF) {
multicast_link_write_sock(0,
(char *)&pdu,
sizeof(UE_tport_header_t));
}
} else {
wait_on_condition(&UE->timer_mutex,&UE->timer_cond,&UE->instance_cnt_timer,"timer_thread");
release_thread(&UE->timer_mutex,&UE->instance_cnt_timer,"timer_thread");
}
/*stop_meas(&UE->timer_stats);
t_diff = get_time_meas_us(&UE->timer_stats);
stop_meas(&UE->timer_stats);
t_diff = get_time_meas_us(&UE->timer_stats);*/
}
free(phy_stub_ticking);
pthread_cond_destroy(&phy_stub_ticking->cond_ticking);
pthread_mutex_destroy(&phy_stub_ticking->mutex_ticking);
return 0;
}
int init_timer_thread(void)
{
//PHY_VARS_UE *UE=PHY_vars_UE_g[0];
PHY_VARS_UE *UE=PHY_vars_UE_g[0][0];
phy_stub_ticking = (SF_ticking *)malloc(sizeof(SF_ticking));
pthread_mutex_init(&UE->timer_mutex,NULL);
pthread_cond_init(&UE->timer_cond,NULL);
UE->instance_cnt_timer = -1;
memset(&phy_stub_ticking->num_single_thread[0],0,sizeof(int)*NB_THREAD_INST);
pthread_mutex_init(&phy_stub_ticking->mutex_ticking,NULL);
pthread_cond_init(&phy_stub_ticking->cond_ticking,NULL);
pthread_mutex_init(&phy_stub_ticking->mutex_single_thread,NULL);
pthread_cond_init(&phy_stub_ticking->cond_single_thread,NULL);
pthread_create(&phy_stub_ticking->pthread_timer, NULL, &timer_thread, NULL);
return 0;
}
/* HACK: this function is needed to compile the UE
* fix it somehow
*/
int8_t find_dlsch(uint16_t rnti,
PHY_VARS_eNB *eNB,
find_type_t type)
{
printf("you cannot read this\n");
abort();
}