Something went wrong on our end
-
Thomas Laurent authoredThomas Laurent authored
nr-ue.c 34.57 KiB
/*
* Licensed to the OpenAirInterface (OAI) Software Alliance under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The OpenAirInterface Software Alliance licenses this file to You under
* the OAI Public License, Version 1.0 (the "License"); you may not use this file
* except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.openairinterface.org/?page_id=698
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*-------------------------------------------------------------------------------
* For more information about the OpenAirInterface (OAI) Software Alliance:
* contact@openairinterface.org
*/
#include "executables/thread-common.h"
#include "executables/nr-uesoftmodem.h"
#include "NR_MAC_UE/mac.h"
//#include "RRC/LTE/rrc_extern.h"
#include "PHY_INTERFACE/phy_interface_extern.h"
#undef MALLOC //there are two conflicting definitions, so we better make sure we don't use it at all
//#undef FRAME_LENGTH_COMPLEX_SAMPLES //there are two conflicting definitions, so we better make sure we don't use it at all
#include "fapi_nr_ue_l1.h"
#include "PHY/phy_extern_nr_ue.h"
#include "PHY/INIT/phy_init.h"
#include "PHY/MODULATION/modulation_UE.h"
#include "NR_MAC_UE/mac_proto.h"
#include "RRC/NR_UE/rrc_proto.h"
#include "SCHED_NR_UE/phy_frame_config_nr.h"
#include "SCHED_NR_UE/defs.h"
#include "PHY/NR_UE_TRANSPORT/nr_transport_proto_ue.h"
#include "common/utils/LOG/log.h"
#include "common/utils/system.h"
#include "common/utils/LOG/vcd_signal_dumper.h"
#include "executables/nr-softmodem.h"
#include "T.h"
#ifdef XFORMS
#include "PHY/TOOLS/nr_phy_scope.h"
extern char do_forms;
#endif
// Missing stuff?
int next_ra_frame = 0;
module_id_t next_Mod_id = 0;
extern double cpuf;
//static nfapi_nr_config_request_t config_t;
//static nfapi_nr_config_request_t* config =&config_t;
/*
* NR SLOT PROCESSING SEQUENCE
*
* Processing occurs with following steps for connected mode:
*
* - Rx samples for a slot are received,
* - PDCCH processing (including DCI extraction for downlink and uplink),
* - PDSCH processing (including transport blocks decoding),
* - PUCCH/PUSCH (transmission of acknowledgements, CSI, ... or data).
*
* Time between reception of the slot and related transmission depends on UE processing performance.
* It is defined by the value NR_UE_CAPABILITY_SLOT_RX_TO_TX.
*
* In NR, network gives the duration between Rx slot and Tx slot in the DCI:
* - for reception of a PDSCH and its associated acknowledgment slot (with a PUCCH or a PUSCH),
* - for reception of an uplink grant and its associated PUSCH slot.
*
* So duration between reception and it associated transmission depends on its transmission slot given in the DCI.
* NR_UE_CAPABILITY_SLOT_RX_TO_TX means the minimum duration but higher duration can be given by the network because UE can support it.
*
* Slot k
* -------+------------+--------
* Frame | Tx samples |
* Subframe | buffer |
* Slot n -------+------------+--------
* ------ +------------+-------- |
* | Rx samples | |
* | buffer | |
* -------+------------+-------- |
* | |
* V |
* +------------+ |
* | PDCCH | |
* | processing | |
* +------------+ |
* | | |
* | v |
* | +------------+ |
* | | PDSCH | |
* | | processing | decoding result |
* | +------------+ -> ACK/NACK of PDSCH |
* | | |
* | v |
* | +-------------+------------+ |
* | | PUCCH/PUSCH | Tx samples | |
* | | processing | transfer | |
* | +-------------+------------+ |
* | |
* |/___________________________________________________________\|
* \ duration between reception and associated transmission /
*
* Remark: processing is done slot by slot, it can be distribute on different threads which are executed in parallel.
* This is an architecture optimization in order to cope with real time constraints.
* By example, for LTE, subframe processing is spread over 4 different threads.
*
*/
#ifndef NO_RAT_NR
#define DURATION_RX_TO_TX (NR_UE_CAPABILITY_SLOT_RX_TO_TX) /* for NR this will certainly depends to such UE capability which is not yet defined */
#else
#define DURATION_RX_TO_TX (6) /* For LTE, this duration is fixed to 4 and it is linked to LTE standard for both modes FDD/TDD */
#endif
#define FRAME_PERIOD 100000000ULL
#define DAQ_PERIOD 66667ULL
typedef enum {
pss=0,
pbch=1,
si=2
} sync_mode_t;
void init_nr_ue_vars(PHY_VARS_NR_UE *ue,
uint8_t UE_id,
uint8_t abstraction_flag)
{
int nb_connected_gNB = 1, gNB_id;
ue->Mod_id = UE_id;
ue->mac_enabled = 1;
ue->if_inst = nr_ue_if_module_init(0);
// Setting UE mode to NOT_SYNCHED by default
for (gNB_id = 0; gNB_id < nb_connected_gNB; gNB_id++){
ue->UE_mode[gNB_id] = NOT_SYNCHED;
ue->prach_resources[gNB_id] = (NR_PRACH_RESOURCES_t *)malloc16_clear(sizeof(NR_PRACH_RESOURCES_t));
}
// initialize all signal buffers
init_nr_ue_signal(ue, nb_connected_gNB, abstraction_flag);
// intialize transport
init_nr_ue_transport(ue, abstraction_flag);
// init N_TA offset
init_N_TA_offset(ue);
}
/*!
* It performs band scanning and synchonization.
* \param arg is a pointer to a \ref PHY_VARS_NR_UE structure.
*/
typedef struct syncData_s {
UE_nr_rxtx_proc_t proc;
PHY_VARS_NR_UE *UE;
} syncData_t;
static void UE_synch(void *arg) {
syncData_t *syncD=(syncData_t *) arg;
int i, hw_slot_offset;
PHY_VARS_NR_UE *UE = syncD->UE;
sync_mode_t sync_mode = pbch;
//int CC_id = UE->CC_id;
static int freq_offset=0;
UE->is_synchronized = 0;
if (UE->UE_scan == 0) {
#ifdef FR2_TEST
// Overwrite DL frequency (for FR2 testing)
if (downlink_frequency[0][0]!=0){
UE->frame_parms.dl_CarrierFreq = downlink_frequency[0][0];
UE->frame_parms.ul_CarrierFreq = downlink_frequency[0][0];
}
#endif
for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
LOG_I( PHY, "[SCHED][UE] Check absolute frequency DL %f, UL %f (RF card %d, oai_exit %d, channel %d, rx_num_channels %d)\n",
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i],
openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i],
UE->rf_map.card,
oai_exit,
i,
openair0_cfg[0].rx_num_channels);
}
sync_mode = pbch;
} else {
LOG_E(PHY,"Fixme!\n");
/*
for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
downlink_frequency[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[CC_id].dl_min;
uplink_frequency_offset[UE->rf_map.card][UE->rf_map.chain+i] =
bands_to_scan.band_info[CC_id].ul_min-bands_to_scan.band_info[CC_id].dl_min;
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i];
openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] =
downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i];
openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB;
}
*/
}
LOG_W(PHY, "Starting sync detection\n");
switch (sync_mode) {
/*
case pss:
LOG_I(PHY,"[SCHED][UE] Scanning band %d (%d), freq %u\n",bands_to_scan.band_info[current_band].band, current_band,bands_to_scan.band_info[current_band].dl_min+current_offset);
//lte_sync_timefreq(UE,current_band,bands_to_scan.band_info[current_band].dl_min+current_offset);
current_offset += 20000000; // increase by 20 MHz
if (current_offset > bands_to_scan.band_info[current_band].dl_max-bands_to_scan.band_info[current_band].dl_min) {
current_band++;
current_offset=0;
}
if (current_band==bands_to_scan.nbands) {
current_band=0;
oai_exit=1;
}
for (i=0; i<openair0_cfg[UE->rf_map.card].rx_num_channels; i++) {
downlink_frequency[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[current_band].dl_min+current_offset;
uplink_frequency_offset[UE->rf_map.card][UE->rf_map.chain+i] = bands_to_scan.band_info[current_band].ul_min-bands_to_scan.band_info[0].dl_min + current_offset;
openair0_cfg[UE->rf_map.card].rx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i];
openair0_cfg[UE->rf_map.card].tx_freq[UE->rf_map.chain+i] = downlink_frequency[CC_id][i]+uplink_frequency_offset[CC_id][i];
openair0_cfg[UE->rf_map.card].rx_gain[UE->rf_map.chain+i] = UE->rx_total_gain_dB;
if (UE->UE_scan_carrier) {
openair0_cfg[UE->rf_map.card].autocal[UE->rf_map.chain+i] = 1;
}
}
break;
*/
case pbch:
LOG_I(PHY, "[UE thread Synch] Running Initial Synch (mode %d)\n",UE->mode);
uint64_t dl_carrier, ul_carrier;
double rx_gain_off = 0;
nr_get_carrier_frequencies(&UE->frame_parms, &dl_carrier, &ul_carrier);
if (nr_initial_sync( &syncD->proc, UE, UE->mode,2) == 0) {
freq_offset = UE->common_vars.freq_offset; // frequency offset computed with pss in initial sync
hw_slot_offset = ((UE->rx_offset<<1) / UE->frame_parms.samples_per_subframe * UE->frame_parms.slots_per_subframe) +
round((float)((UE->rx_offset<<1) % UE->frame_parms.samples_per_subframe)/UE->frame_parms.samples_per_slot0);
// rerun with new cell parameters and frequency-offset
// todo: the freq_offset computed on DL shall be scaled before being applied to UL
nr_rf_card_config(&openair0_cfg[UE->rf_map.card], rx_gain_off, ul_carrier, dl_carrier, freq_offset);
LOG_I(PHY,"Got synch: hw_slot_offset %d, carrier off %d Hz, rxgain %f (DL %f Hz, UL %f Hz)\n",
hw_slot_offset,
freq_offset,
openair0_cfg[UE->rf_map.card].rx_gain[0],
openair0_cfg[UE->rf_map.card].rx_freq[0],
openair0_cfg[UE->rf_map.card].tx_freq[0]);
// reconfigure for potentially different bandwidth
switch(UE->frame_parms.N_RB_DL) {
case 6:
openair0_cfg[UE->rf_map.card].sample_rate =1.92e6;
openair0_cfg[UE->rf_map.card].rx_bw =.96e6;
openair0_cfg[UE->rf_map.card].tx_bw =.96e6;
// openair0_cfg[0].rx_gain[0] -= 12;
break;
case 25:
openair0_cfg[UE->rf_map.card].sample_rate =7.68e6;
openair0_cfg[UE->rf_map.card].rx_bw =2.5e6;
openair0_cfg[UE->rf_map.card].tx_bw =2.5e6;
// openair0_cfg[0].rx_gain[0] -= 6;
break;
case 50:
openair0_cfg[UE->rf_map.card].sample_rate =15.36e6;
openair0_cfg[UE->rf_map.card].rx_bw =5.0e6;
openair0_cfg[UE->rf_map.card].tx_bw =5.0e6;
// openair0_cfg[0].rx_gain[0] -= 3;
break;
case 100:
openair0_cfg[UE->rf_map.card].sample_rate=30.72e6;
openair0_cfg[UE->rf_map.card].rx_bw=10.0e6;
openair0_cfg[UE->rf_map.card].tx_bw=10.0e6;
// openair0_cfg[0].rx_gain[0] -= 0;
break;
case 66:
openair0_cfg[UE->rf_map.card].sample_rate=122.88e6;
openair0_cfg[UE->rf_map.card].rx_bw=100.e6;
openair0_cfg[UE->rf_map.card].tx_bw=100.e6;
break;
}
if (UE->mode != loop_through_memory) {
UE->rfdevice.trx_set_freq_func(&UE->rfdevice,&openair0_cfg[0],0);
//UE->rfdevice.trx_set_gains_func(&openair0,&openair0_cfg[0]);
//UE->rfdevice.trx_stop_func(&UE->rfdevice);
// sleep(1);
/*if (UE->rfdevice.trx_start_func(&UE->rfdevice) != 0 ) {
LOG_E(HW,"Could not start the device\n");
oai_exit=1;
}*/
}
if (UE->UE_scan_carrier == 1) {
UE->UE_scan_carrier = 0;
} else {
UE->is_synchronized = 1;
}
} else {
if (UE->UE_scan_carrier == 1) {
if (freq_offset >= 0)
freq_offset += 100;
freq_offset *= -1;
nr_rf_card_config(&openair0_cfg[UE->rf_map.card], rx_gain_off, ul_carrier, dl_carrier, freq_offset);
LOG_I(PHY, "Initial sync failed: trying carrier off %d Hz\n", freq_offset);
if (UE->mode != loop_through_memory)
UE->rfdevice.trx_set_freq_func(&UE->rfdevice,&openair0_cfg[0],0);
}
break;
case si:
default:
break;
}
}
}
void processSlotTX( PHY_VARS_NR_UE *UE, UE_nr_rxtx_proc_t *proc) {
fapi_nr_config_request_t *cfg = &UE->nrUE_config;
int tx_slot_type = nr_ue_slot_select(cfg, proc->frame_tx, proc->nr_slot_tx);
uint8_t gNB_id = 0;
if (tx_slot_type == NR_UPLINK_SLOT || tx_slot_type == NR_MIXED_SLOT){
// trigger L2 to run ue_scheduler thru IF module
// [TODO] mapping right after NR initial sync
if(UE->if_inst != NULL && UE->if_inst->ul_indication != NULL) {
nr_uplink_indication_t ul_indication;
memset((void*)&ul_indication, 0, sizeof(ul_indication));
ul_indication.module_id = UE->Mod_id;
ul_indication.gNB_index = gNB_id;
ul_indication.cc_id = UE->CC_id;
ul_indication.frame_rx = proc->frame_rx;
ul_indication.slot_rx = proc->nr_slot_rx;
ul_indication.frame_tx = proc->frame_tx;
ul_indication.slot_tx = proc->nr_slot_tx;
ul_indication.thread_id = proc->thread_id;
UE->if_inst->ul_indication(&ul_indication);
}
if (UE->mode != loop_through_memory) {
phy_procedures_nrUE_TX(UE,proc,0);
}
}
}
void processSlotRX( PHY_VARS_NR_UE *UE, UE_nr_rxtx_proc_t *proc) {
fapi_nr_config_request_t *cfg = &UE->nrUE_config;
int rx_slot_type = nr_ue_slot_select(cfg, proc->frame_rx, proc->nr_slot_rx);
uint8_t gNB_id = 0;
if (rx_slot_type == NR_DOWNLINK_SLOT || rx_slot_type == NR_MIXED_SLOT){
if(UE->if_inst != NULL && UE->if_inst->dl_indication != NULL) {
nr_downlink_indication_t dl_indication;
memset((void*)&dl_indication, 0, sizeof(dl_indication));
dl_indication.module_id = UE->Mod_id;
dl_indication.gNB_index = gNB_id;
dl_indication.cc_id = UE->CC_id;
dl_indication.frame = proc->frame_rx;
dl_indication.slot = proc->nr_slot_rx;
dl_indication.thread_id = proc->thread_id;
UE->if_inst->dl_indication(&dl_indication, NULL);
}
// Process Rx data for one sub-frame
#ifdef UE_SLOT_PARALLELISATION
phy_procedures_slot_parallelization_nrUE_RX( UE, proc, 0, 0, 1, UE->mode, no_relay, NULL );
#else
uint64_t a=rdtsc();
phy_procedures_nrUE_RX( UE, proc, 0, UE->mode);
LOG_D(PHY,"phy_procedures_nrUE_RX: slot:%d, time %lu\n", proc->nr_slot_rx, (rdtsc()-a)/3500);
//printf(">>> nr_ue_pdcch_procedures ended\n");
#endif
if(IS_SOFTMODEM_NOS1){
NR_UE_MAC_INST_t *mac = get_mac_inst(0);
protocol_ctxt_t ctxt;
PROTOCOL_CTXT_SET_BY_MODULE_ID(&ctxt, UE->Mod_id, ENB_FLAG_NO, mac->crnti, proc->frame_rx, proc->nr_slot_rx, 0);
pdcp_run(&ctxt);
}
}
// no UL for now
/*
if (UE->mac_enabled==1) {
// trigger L2 to run ue_scheduler thru IF module
// [TODO] mapping right after NR initial sync
if(UE->if_inst != NULL && UE->if_inst->ul_indication != NULL) {
UE->ul_indication.module_id = 0;
UE->ul_indication.gNB_index = 0;
UE->ul_indication.cc_id = 0;
UE->ul_indication.frame = proc->frame_rx;
UE->ul_indication.slot = proc->nr_slot_rx;
UE->ul_indication.thread_id = proc->thread_id;
UE->if_inst->ul_indication(&UE->ul_indication);
}
}
*/
}
/*!
* \brief This is the UE thread for RX subframe n and TX subframe n+4.
* This thread performs the phy_procedures_UE_RX() on every received slot.
* then, if TX is enabled it performs TX for n+4.
* \param arg is a pointer to a \ref PHY_VARS_NR_UE structure.
* \returns a pointer to an int. The storage is not on the heap and must not be freed.
*/
typedef struct processingData_s {
UE_nr_rxtx_proc_t proc;
PHY_VARS_NR_UE *UE;
} processingData_t;
void UE_processing(void *arg) {
processingData_t *rxtxD = (processingData_t *) arg;
UE_nr_rxtx_proc_t *proc = &rxtxD->proc;
PHY_VARS_NR_UE *UE = rxtxD->UE;
int slot_tx = proc->nr_slot_tx;
int frame_tx = proc->frame_tx;
processSlotRX(UE, proc);
processSlotTX(UE, proc);
ue_ta_procedures(UE, slot_tx, frame_tx);
}
void dummyWrite(PHY_VARS_NR_UE *UE,openair0_timestamp timestamp, int writeBlockSize) {
void *dummy_tx[UE->frame_parms.nb_antennas_tx];
for (int i=0; i<UE->frame_parms.nb_antennas_tx; i++)
dummy_tx[i]=malloc16_clear(writeBlockSize*4);
AssertFatal( writeBlockSize ==
UE->rfdevice.trx_write_func(&UE->rfdevice,
timestamp,
dummy_tx,
writeBlockSize,
UE->frame_parms.nb_antennas_tx,
4),"");
for (int i=0; i<UE->frame_parms.nb_antennas_tx; i++)
free(dummy_tx[i]);
}
void readFrame(PHY_VARS_NR_UE *UE, openair0_timestamp *timestamp, bool toTrash) {
void *rxp[NB_ANTENNAS_RX];
for(int x=0; x<20; x++) { // two frames for initial sync
for (int slot=0; slot<UE->frame_parms.slots_per_subframe; slot ++ ) {
for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++) {
if (toTrash)
rxp[i]=malloc16(UE->frame_parms.get_samples_per_slot(slot,&UE->frame_parms)*4);
else
rxp[i] = ((void *)&UE->common_vars.rxdata[i][0]) +
4*((x*UE->frame_parms.samples_per_subframe)+
UE->frame_parms.get_samples_slot_timestamp(slot,&UE->frame_parms,0));
}
AssertFatal( UE->frame_parms.get_samples_per_slot(slot,&UE->frame_parms) ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
timestamp,
rxp,
UE->frame_parms.get_samples_per_slot(slot,&UE->frame_parms),
UE->frame_parms.nb_antennas_rx), "");
if (IS_SOFTMODEM_RFSIM)
dummyWrite(UE,*timestamp, UE->frame_parms.get_samples_per_slot(slot,&UE->frame_parms));
if (toTrash)
for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++)
free(rxp[i]);
}
}
}
void syncInFrame(PHY_VARS_NR_UE *UE, openair0_timestamp *timestamp) {
LOG_I(PHY,"Resynchronizing RX by %d samples (mode = %d)\n",UE->rx_offset,UE->mode);
*timestamp += UE->frame_parms.get_samples_per_slot(1,&UE->frame_parms);
for ( int size=UE->rx_offset ; size > 0 ; size -= UE->frame_parms.samples_per_subframe ) {
int unitTransfer=size>UE->frame_parms.samples_per_subframe ? UE->frame_parms.samples_per_subframe : size ;
// we write before read becasue gNB waits for UE to write and both executions halt
// this happens here as the read size is samples_per_subframe which is very much larger than samp_per_slot
if (IS_SOFTMODEM_RFSIM) dummyWrite(UE,*timestamp, unitTransfer);
AssertFatal(unitTransfer ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
timestamp,
(void **)UE->common_vars.rxdata,
unitTransfer,
UE->frame_parms.nb_antennas_rx),"");
*timestamp += unitTransfer; // this does not affect the read but needed for RFSIM write
}
}
int computeSamplesShift(PHY_VARS_NR_UE *UE) {
// compute TO compensation that should be applied for this frame
if ( UE->rx_offset < UE->frame_parms.samples_per_frame/2 &&
UE->rx_offset > 0 ) {
//LOG_I(PHY,"!!!adjusting -1 samples!!!\n");
return -1 ;
}
if ( UE->rx_offset > UE->frame_parms.samples_per_frame/2 &&
UE->rx_offset < UE->frame_parms.samples_per_frame ) {
//LOG_I(PHY,"!!!adjusting +1 samples!!!\n");
return 1;
}
return 0;
}
static inline int get_firstSymSamp(uint16_t slot, NR_DL_FRAME_PARMS *fp) {
if (fp->numerology_index == 0)
return fp->nb_prefix_samples0 + fp->ofdm_symbol_size;
int num_samples = (slot%(fp->slots_per_subframe/2)) ? fp->nb_prefix_samples : fp->nb_prefix_samples0;
num_samples += fp->ofdm_symbol_size;
return num_samples;
}
static inline int get_readBlockSize(uint16_t slot, NR_DL_FRAME_PARMS *fp) {
int rem_samples = fp->get_samples_per_slot(slot, fp) - get_firstSymSamp(slot, fp);
int next_slot_first_symbol = 0;
if (slot < (fp->slots_per_frame-1))
next_slot_first_symbol = get_firstSymSamp(slot+1, fp);
return rem_samples + next_slot_first_symbol;
}
void *UE_thread(void *arg) {
//this thread should be over the processing thread to keep in real time
PHY_VARS_NR_UE *UE = (PHY_VARS_NR_UE *) arg;
// int tx_enabled = 0;
openair0_timestamp timestamp, writeTimestamp;
void *rxp[NB_ANTENNAS_RX], *txp[NB_ANTENNAS_TX];
int start_rx_stream = 0;
AssertFatal(0== openair0_device_load(&(UE->rfdevice), &openair0_cfg[0]), "");
UE->rfdevice.host_type = RAU_HOST;
AssertFatal(UE->rfdevice.trx_start_func(&UE->rfdevice) == 0, "Could not start the device\n");
notifiedFIFO_t nf;
initNotifiedFIFO(&nf);
int nbSlotProcessing=0;
int thread_idx=0;
notifiedFIFO_t freeBlocks;
initNotifiedFIFO_nothreadSafe(&freeBlocks);
NR_UE_MAC_INST_t *mac = get_mac_inst(0);
int timing_advance = UE->timing_advance;
for (int i=0; i<RX_NB_TH+1; i++) // RX_NB_TH working + 1 we are making to be pushed
pushNotifiedFIFO_nothreadSafe(&freeBlocks,
newNotifiedFIFO_elt(sizeof(processingData_t), 0,&nf,UE_processing));
bool syncRunning=false;
const int nb_slot_frame = UE->frame_parms.slots_per_frame;
int absolute_slot=0, decoded_frame_rx=INT_MAX, trashed_frames=0;
while (!oai_exit) {
if (syncRunning) {
notifiedFIFO_elt_t *res=tryPullTpool(&nf, Tpool);
if (res) {
syncRunning=false;
syncData_t *tmp=(syncData_t *)NotifiedFifoData(res);
if (UE->is_synchronized) {
decoded_frame_rx=(((mac->mib->systemFrameNumber.buf[0] >> mac->mib->systemFrameNumber.bits_unused)<<4) | tmp->proc.decoded_frame_rx);
// shift the frame index with all the frames we trashed meanwhile we perform the synch search
decoded_frame_rx=(decoded_frame_rx + (!UE->init_sync_frame) + trashed_frames) % MAX_FRAME_NUMBER;
}
delNotifiedFIFO_elt(res);
} else {
readFrame(UE, ×tamp, true);
trashed_frames+=2;
continue;
}
}
AssertFatal( !syncRunning, "At this point synchronization can't be running\n");
if (!UE->is_synchronized) {
readFrame(UE, ×tamp, false);
notifiedFIFO_elt_t *Msg=newNotifiedFIFO_elt(sizeof(syncData_t),0,&nf,UE_synch);
syncData_t *syncMsg=(syncData_t *)NotifiedFifoData(Msg);
syncMsg->UE=UE;
memset(&syncMsg->proc, 0, sizeof(syncMsg->proc));
pushTpool(Tpool, Msg);
trashed_frames=0;
syncRunning=true;
continue;
}
if (start_rx_stream==0) {
start_rx_stream=1;
syncInFrame(UE, ×tamp);
UE->rx_offset=0;
UE->time_sync_cell=0;
// read in first symbol
AssertFatal (UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0 ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
×tamp,
(void **)UE->common_vars.rxdata,
UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0,
UE->frame_parms.nb_antennas_rx),"");
// we have the decoded frame index in the return of the synch process
// and we shifted above to the first slot of next frame
decoded_frame_rx++;
// we do ++ first in the regular processing, so it will be begin of frame;
absolute_slot=decoded_frame_rx*nb_slot_frame -1;
continue;
}
absolute_slot++;
// whatever means thread_idx
// Fix me: will be wrong when slot 1 is slow, as slot 2 finishes
// Slot 3 will overlap if RX_NB_TH is 2
// this is general failure in UE !!!
thread_idx = absolute_slot % RX_NB_TH;
int slot_nr = absolute_slot % nb_slot_frame;
notifiedFIFO_elt_t *msgToPush;
AssertFatal((msgToPush=pullNotifiedFIFO_nothreadSafe(&freeBlocks)) != NULL,"chained list failure");
processingData_t *curMsg=(processingData_t *)NotifiedFifoData(msgToPush);
curMsg->UE=UE;
// update thread index for received subframe
curMsg->proc.thread_id = thread_idx;
curMsg->proc.CC_id = UE->CC_id;
curMsg->proc.nr_slot_rx = slot_nr;
curMsg->proc.nr_slot_tx = (absolute_slot + DURATION_RX_TO_TX) % nb_slot_frame;
curMsg->proc.frame_rx = (absolute_slot/nb_slot_frame) % MAX_FRAME_NUMBER;
curMsg->proc.frame_tx = ((absolute_slot+DURATION_RX_TO_TX)/nb_slot_frame) % MAX_FRAME_NUMBER;
curMsg->proc.decoded_frame_rx=-1;
//LOG_I(PHY,"Process slot %d thread Idx %d total gain %d\n", slot_nr, thread_idx, UE->rx_total_gain_dB);
#ifdef OAI_ADRV9371_ZC706
/*uint32_t total_gain_dB_prev = 0;
if (total_gain_dB_prev != UE->rx_total_gain_dB) {
total_gain_dB_prev = UE->rx_total_gain_dB;
openair0_cfg[0].rx_gain[0] = UE->rx_total_gain_dB;
UE->rfdevice.trx_set_gains_func(&UE->rfdevice,&openair0_cfg[0]);
}*/
#endif
int firstSymSamp = get_firstSymSamp(slot_nr, &UE->frame_parms);
for (int i=0; i<UE->frame_parms.nb_antennas_rx; i++)
rxp[i] = (void *)&UE->common_vars.rxdata[i][firstSymSamp+
UE->frame_parms.get_samples_slot_timestamp(slot_nr,&UE->frame_parms,0)];
for (int i=0; i<UE->frame_parms.nb_antennas_tx; i++)
txp[i] = (void *)&UE->common_vars.txdata[i][UE->frame_parms.get_samples_slot_timestamp(
((slot_nr + DURATION_RX_TO_TX - RX_NB_TH)%nb_slot_frame),&UE->frame_parms,0)];
int readBlockSize, writeBlockSize;
if (slot_nr<(nb_slot_frame - 1)) {
readBlockSize=get_readBlockSize(slot_nr, &UE->frame_parms);
writeBlockSize=UE->frame_parms.get_samples_per_slot((slot_nr + DURATION_RX_TO_TX - RX_NB_TH) % nb_slot_frame, &UE->frame_parms);
} else {
UE->rx_offset_diff = computeSamplesShift(UE);
readBlockSize=get_readBlockSize(slot_nr, &UE->frame_parms) -
UE->rx_offset_diff;
writeBlockSize=UE->frame_parms.get_samples_per_slot((slot_nr + DURATION_RX_TO_TX - RX_NB_TH) % nb_slot_frame, &UE->frame_parms)-
UE->rx_offset_diff;
}
AssertFatal(readBlockSize ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
×tamp,
rxp,
readBlockSize,
UE->frame_parms.nb_antennas_rx),"");
if( slot_nr==(nb_slot_frame-1)) {
// read in first symbol of next frame and adjust for timing drift
int first_symbols=UE->frame_parms.ofdm_symbol_size+UE->frame_parms.nb_prefix_samples0; // first symbol of every frames
if ( first_symbols > 0 ) {
openair0_timestamp ignore_timestamp;
AssertFatal(first_symbols ==
UE->rfdevice.trx_read_func(&UE->rfdevice,
&ignore_timestamp,
(void **)UE->common_vars.rxdata,
first_symbols,
UE->frame_parms.nb_antennas_rx),"");
} else
LOG_E(PHY,"can't compensate: diff =%d\n", first_symbols);
}
curMsg->proc.timestamp_tx = timestamp+
UE->frame_parms.get_samples_slot_timestamp(slot_nr,
&UE->frame_parms,DURATION_RX_TO_TX) - firstSymSamp;
notifiedFIFO_elt_t *res;
while (nbSlotProcessing >= RX_NB_TH) {
res=pullTpool(&nf, Tpool);
nbSlotProcessing--;
processingData_t *tmp=(processingData_t *)res->msgData;
if (tmp->proc.decoded_frame_rx != -1)
decoded_frame_rx=(((mac->mib->systemFrameNumber.buf[0] >> mac->mib->systemFrameNumber.bits_unused)<<4) | tmp->proc.decoded_frame_rx);
else
decoded_frame_rx=-1;
pushNotifiedFIFO_nothreadSafe(&freeBlocks,res);
}
if ( decoded_frame_rx>0 && decoded_frame_rx != curMsg->proc.frame_rx)
LOG_E(PHY,"Decoded frame index (%d) is not compatible with current context (%d), UE should go back to synch mode\n",
decoded_frame_rx, curMsg->proc.frame_rx );
// use previous timing_advance value to compute writeTimestamp
writeTimestamp = timestamp + UE->frame_parms.get_samples_slot_timestamp(slot_nr, &UE->frame_parms,DURATION_RX_TO_TX - RX_NB_TH) -
firstSymSamp - openair0_cfg[0].tx_sample_advance - UE->N_TA_offset - timing_advance;
// but use current UE->timing_advance value to compute writeBlockSize
if (UE->timing_advance != timing_advance) {
writeBlockSize -= UE->timing_advance - timing_advance;
timing_advance = UE->timing_advance;
}
AssertFatal( writeBlockSize ==
UE->rfdevice.trx_write_func(&UE->rfdevice,
writeTimestamp,
txp,
writeBlockSize,
UE->frame_parms.nb_antennas_tx,
1),"");
for (int i=0; i<UE->frame_parms.nb_antennas_tx; i++)
memset(txp[i], 0, writeBlockSize);
nbSlotProcessing++;
msgToPush->key=slot_nr;
pushTpool(Tpool, msgToPush);
if ( getenv("RFSIMULATOR") ||IS_SOFTMODEM_RFSIM || IS_SOFTMODEM_NOS1) { //getenv("RFSIMULATOR")
// FixMe: Wait previous thread is done, because race conditions seems too bad
// in case of actual RF board, the overlap between threads mitigate the issue
// We must receive one message, that proves the slot processing is done
res=pullTpool(&nf, Tpool);
nbSlotProcessing--;
processingData_t *tmp=(processingData_t *)res->msgData;
if (tmp->proc.decoded_frame_rx != -1)
decoded_frame_rx=(((mac->mib->systemFrameNumber.buf[0] >> mac->mib->systemFrameNumber.bits_unused)<<4) | tmp->proc.decoded_frame_rx);
else
decoded_frame_rx=-1;
//decoded_frame_rx=tmp->proc.decoded_frame_rx;
pushNotifiedFIFO_nothreadSafe(&freeBlocks,res);
}
} // while !oai_exit
return NULL;
}
void init_NR_UE(int nb_inst, char* rrc_config_path) {
int inst;
NR_UE_MAC_INST_t *mac_inst;
NR_UE_RRC_INST_t* rrc_inst;
for (inst=0; inst < nb_inst; inst++) {
AssertFatal((rrc_inst = nr_l3_init_ue(rrc_config_path)) != NULL, "can not initialize RRC module\n");
AssertFatal((mac_inst = nr_l2_init_ue(rrc_inst)) != NULL, "can not initialize L2 module\n");
AssertFatal((mac_inst->if_module = nr_ue_if_module_init(inst)) != NULL, "can not initialize IF module\n");
NR_PUSCH_TimeDomainResourceAllocationList_t *pusch_TimeDomainAllocationList = NULL;
if (mac_inst->ULbwp[0]->bwp_Dedicated->pusch_Config->choice.setup->pusch_TimeDomainAllocationList) {
pusch_TimeDomainAllocationList = mac_inst->ULbwp[0]->bwp_Dedicated->pusch_Config->choice.setup->pusch_TimeDomainAllocationList->choice.setup;
}
else if (mac_inst->ULbwp[0]->bwp_Common->pusch_ConfigCommon->choice.setup->pusch_TimeDomainAllocationList) {
pusch_TimeDomainAllocationList = mac_inst->ULbwp[0]->bwp_Common->pusch_ConfigCommon->choice.setup->pusch_TimeDomainAllocationList;
}
if (pusch_TimeDomainAllocationList) {
for(int i = 0; i < pusch_TimeDomainAllocationList->list.count; i++) {
AssertFatal(*pusch_TimeDomainAllocationList->list.array[i]->k2 >= DURATION_RX_TO_TX,
"Slot offset K2 (%ld) cannot be less than DURATION_RX_TO_TX (%d)\n",
*pusch_TimeDomainAllocationList->list.array[i]->k2,
DURATION_RX_TO_TX);
}
}
}
}
void init_NR_UE_threads(int nb_inst) {
int inst;
pthread_t threads[nb_inst];
for (inst=0; inst < nb_inst; inst++) {
PHY_VARS_NR_UE *UE = PHY_vars_UE_g[inst][0];
LOG_I(PHY,"Intializing UE Threads for instance %d (%p,%p)...\n",inst,PHY_vars_UE_g[inst],PHY_vars_UE_g[inst][0]);
threadCreate(&threads[inst], UE_thread, (void *)UE, "UEthread", -1, OAI_PRIORITY_RT_MAX);
#ifdef UE_DLSCH_PARALLELISATION
pthread_t dlsch0_threads;
threadCreate(&dlsch0_threads, dlsch_thread, (void *)UE, "DLthread", -1, OAI_PRIORITY_RT_MAX-1);
#endif
}
}
/* HACK: this function is needed to compile the UE
* fix it somehow
*/
int8_t find_dlsch(uint16_t rnti,
PHY_VARS_eNB *eNB,
find_type_t type)
{
printf("you cannot read this\n");
abort();
}
void multicast_link_write_sock(int groupP, char *dataP, uint32_t sizeP) {}