Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
/*******************************************************************************
OpenAirInterface
Copyright(c) 1999 - 2014 Eurecom
OpenAirInterface is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
OpenAirInterface is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with OpenAirInterface.The full GNU General Public License is
included in this distribution in the file called "COPYING". If not,
see <http://www.gnu.org/licenses/>.
Contact Information
OpenAirInterface Admin: openair_admin@eurecom.fr
OpenAirInterface Tech : openair_tech@eurecom.fr
OpenAirInterface Dev : openair4g-devel@eurecom.fr
Address : Eurecom, Campus SophiaTech, 450 Route des Chappes, CS 50193 - 06904 Biot Sophia Antipolis cedex, FRANCE
*******************************************************************************/
#include <arpa/inet.h>
#include <linux/if_packet.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sys/ioctl.h>
#include <sys/socket.h>
#include <net/if.h>
#include <netinet/ether.h>
#include <unistd.h>
#include <errno.h>
#include "common_lib.h"
#include "LMS_SDR.h"
#include "LMS7002M.h"
#include "Si5351C.h"
#include "LMS_StreamBoard.h"
#include "LMS7002M_RegistersMap.h"
#include <cmath>
///define for parameter enumeration if prefix might be needed
#define LMS7param(id) id
LMScomms* usbport;
LMScomms* comport;
LMS7002M* lms7;
Si5351C* Si;
LMS_StreamBoard *lmsStream;
#define RXDCLENGTH 4096
#define NUMBUFF 40
int16_t cos_fsover8[8] = {2047, 1447, 0, -1448, -2047, -1448, 0, 1447};
int16_t cos_3fsover8[8] = {2047, -1448, 0, 1447, -2047, 1447, 0, -1448};
extern "C"
{
int write_output(const char *fname,const char *vname,void *data,int length,int dec,char format);
}
int trx_lms_write(openair0_device *device, openair0_timestamp timestamp, void **buff, int nsamps, int antenna_id, int flags) {
LMS_TRxWrite((int16_t*)buff[0], nsamps,0, timestamp);
return nsamps;
}
int trx_lms_read(openair0_device *device, openair0_timestamp *ptimestamp, void **buff, int nsamps, int antenna_id) {
uint64_t timestamp;
int16_t *dst_ptr = (int16_t*) buff[0];
int ret;
ret = LMS_TRxRead(dst_ptr, nsamps,0,×tamp, 10);
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
*ptimestamp=timestamp;
return ret;
}
void set_rx_gain_offset(openair0_config_t *openair0_cfg, int chain_index) {
int i=0;
// loop through calibration table to find best adjustment factor for RX frequency
double min_diff = 6e9,diff;
while (openair0_cfg->rx_gain_calib_table[i].freq>0) {
diff = fabs(openair0_cfg->rx_freq[chain_index] - openair0_cfg->rx_gain_calib_table[i].freq);
printf("cal %d: freq %f, offset %f, diff %f\n",
i,
openair0_cfg->rx_gain_calib_table[i].freq,
openair0_cfg->rx_gain_calib_table[i].offset,diff);
if (min_diff > diff) {
min_diff = diff;
openair0_cfg->rx_gain_offset[chain_index] = openair0_cfg->rx_gain_calib_table[i].offset;
}
i++;
}
}
/*
void calibrate_rf(openair0_device *device) {
openair0_timestamp ptimestamp;
int16_t *calib_buffp,*calib_tx_buffp;
int16_t calib_buff[2*RXDCLENGTH];
int16_t calib_tx_buff[2*RXDCLENGTH];
int i,j;
int8_t offI,offQ,offIold,offQold,offInew,offQnew,offphase,offphaseold,offphasenew,offgain,offgainold,offgainnew;
int32_t meanI,meanQ,meanIold,meanQold;
int cnt=0,loop;
liblms7_status opStatus;
int16_t dcoffi;
int16_t dcoffq;
int16_t dccorri;
int16_t dccorrq;
const int16_t firCoefs[] =
{
-2531,
-517,
2708,
188,
-3059,
216,
3569,
-770,
-4199,
1541,
4886,
-2577,
-5552,
3909,
6108,
-5537,
-6457,
7440,
6507,
-9566,
-6174,
11845,
5391,
-14179,
-4110,
16457,
2310,
-18561,
0,
20369,
-2780,
-21752,
5963,
22610,
-9456,
-22859,
13127,
22444,
-16854,
-21319,
20489,
19492,
-23883,
-17002,
26881,
13902,
-29372,
-10313,
31226,
6345,
-32380,
-2141,
32767,
-2141,
-32380,
6345,
31226,
-10313,
-29372,
13902,
26881,
-17002,
-23883,
19492,
20489,
-21319,
-16854,
22444,
13127,
-22859,
-9456,
22610,
5963,
-21752,
-2780,
20369,
0,
-18561,
2310,
16457,
-4110,
-14179,
5391,
11845,
-6174,
-9566,
6507,
7440,
-6457,
-5537,
6108,
3909,
-5552,
-2577,
4886,
1541,
-4199,
-770,
3569,
216,
-3059,
188,
2708,
-517,
-2531
};
j=0;
for (i=0;i<RXDCLENGTH;i++) {
calib_tx_buff[j++] = cos_fsover8[i&7];
calib_tx_buff[j++] = cos_fsover8[(i+6)&7]; // sin
}
calib_buffp = &calib_buff[0];
calib_tx_buffp = &calib_tx_buff[0];
lms7->BackupAllRegisters();
uint8_t ch = (uint8_t)lms7->Get_SPI_Reg_bits(LMS7param(MAC));
//Stage 1
uint8_t sel_band1_trf = (uint8_t)lms7->Get_SPI_Reg_bits(LMS7param(SEL_BAND1_TRF));
uint8_t sel_band2_trf = (uint8_t)lms7->Get_SPI_Reg_bits(LMS7param(SEL_BAND2_TRF));
{
uint16_t requiredRegs[] = { 0x0400, 0x040A, 0x010D, 0x040C };
uint16_t requiredMask[] = { 0x6000, 0x3007, 0x0040, 0x00FF }; //CAPSEL, AGC_MODE, AGC_AVG, EN_DCOFF, Bypasses
uint16_t requiredValue[] = { 0x0000, 0x1007, 0x0040, 0x00BD };
lms7->Modify_SPI_Reg_mask(requiredRegs, requiredMask, requiredValue, 0, 3);
}
// opStatus = lms7->SetFrequencySX(LMS7002M::Rx, device->openair0_cfg[0].tx_freq[0]/1e6,30.72);
// put TX on fs/4
opStatus = lms7->CalibrateRxSetup(device->openair0_cfg[0].sample_rate/1e6);
if (opStatus != LIBLMS7_SUCCESS) {
printf("Cannot calibrate for %f MHz\n",device->openair0_cfg[0].sample_rate/1e6);
exit(-1);
}
// fill TX buffer with fs/8 complex sinusoid
offIold=offQold=64;
lms7->SetRxDCOFF(offIold,offQold);
LMS_RxStart();
for (i=0;i<NUMBUFF;i++)
trx_lms_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
for (meanIold=meanQold=i=j=0;i<RXDCLENGTH;i++) {
meanIold+=calib_buff[j++];
meanQold+=calib_buff[j++];
}
meanIold/=RXDCLENGTH;
meanQold/=RXDCLENGTH;
printf("[LMS] RX DC: (%d,%d) => (%d,%d)\n",offIold,offQold,meanIold,meanQold);
offI=offQ=-64;
lms7->SetRxDCOFF(offI,offQ);
for (i=0;i<NUMBUFF;i++)
trx_lms_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
meanI+=calib_buff[j++];
meanQ+=calib_buff[j++];
}
meanI/=RXDCLENGTH;
meanQ/=RXDCLENGTH;
printf("[LMS] RX DC: (%d,%d) => (%d,%d)\n",offI,offQ,meanI,meanQ);
while (cnt++ < 7) {
offInew=(offIold+offI)>>1;
offQnew=(offQold+offQ)>>1;
if (meanI*meanI < meanIold*meanIold) {
meanIold = meanI;
offIold = offI;
printf("[LMS] *** RX DC: offI %d => %d\n",offIold,meanI);
}
if (meanQ*meanQ < meanQold*meanQold) {
meanQold = meanQ;
offQold = offQ;
printf("[LMS] *** RX DC: offQ %d => %d\n",offQold,meanQ);
}
offI = offInew;
offQ = offQnew;
lms7->SetRxDCOFF(offI,offQ);
for (i=0;i<NUMBUFF;i++)
trx_lms_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
meanI+=calib_buff[j++];
meanQ+=calib_buff[j++];
}
meanI/=RXDCLENGTH;
meanQ/=RXDCLENGTH;
printf("[LMS] RX DC: (%d,%d) => (%d,%d)\n",offI,offQ,meanI,meanQ);
}
if (meanI*meanI < meanIold*meanIold) {
meanIold = meanI;
offIold = offI;
printf("[LMS] *** RX DC: offI %d => %d\n",offIold,meanI);
}
if (meanQ*meanQ < meanQold*meanQold) {
meanQold = meanQ;
offQold = offQ;
printf("[LMS] *** RX DC: offQ %d => %d\n",offQold,meanQ);
}
printf("[LMS] RX DC: (%d,%d) => (%d,%d)\n",offIold,offQold,meanIold,meanQold);
lms7->SetRxDCOFF(offIold,offQold);
dcoffi = offIold;
dcoffq = offQold;
lms7->Modify_SPI_Reg_bits(LMS7param(MAC), ch);
lms7->Modify_SPI_Reg_bits(LMS7param(AGC_MODE_RXTSP), 1);
lms7->Modify_SPI_Reg_bits(LMS7param(CAPSEL), 0);
// TX LO leakage
offQold=offIold=127;
lms7->SPI_write(0x0204,(((int16_t)offIold)<<7)|offQold);
{
uint16_t requiredRegs[] = { 0x0400, 0x040A, 0x010D, 0x040C };
uint16_t requiredMask[] = { 0x6000, 0x3007, 0x0040, 0x00FF }; //CAPSEL, AGC_MODE, AGC_AVG, EN_DCOFF, Bypasses
uint16_t requiredValue[] = { 0x0000, 0x1007, 0x0040, 0x00BD };
lms7->Modify_SPI_Reg_mask(requiredRegs, requiredMask, requiredValue, 0, 3);
}
sel_band1_trf = (uint8_t)lms7->Get_SPI_Reg_bits(LMS7param(SEL_BAND1_TRF));
sel_band2_trf = (uint8_t)lms7->Get_SPI_Reg_bits(LMS7param(SEL_BAND2_TRF));
//B
lms7->Modify_SPI_Reg_bits(0x0100, 0, 0, 1); //EN_G_TRF 1
if (sel_band1_trf == 1)
{
lms7->Modify_SPI_Reg_bits(LMS7param(PD_RLOOPB_1_RFE), 0); //PD_RLOOPB_1_RFE 0
lms7->Modify_SPI_Reg_bits(LMS7param(EN_INSHSW_LB1_RFE), 0); //EN_INSHSW_LB1 0
}
if (sel_band2_trf == 1)
{
lms7->Modify_SPI_Reg_bits(LMS7param(PD_RLOOPB_2_RFE), 0); //PD_RLOOPB_2_RFE 0
lms7->Modify_SPI_Reg_bits(LMS7param(EN_INSHSW_LB2_RFE), 0); // EN_INSHSW_LB2 0
}
// FixRXSaturation();
lms7->Modify_SPI_Reg_bits(LMS7param(GFIR3_BYP_RXTSP), 0); //GFIR3_BYP 0
lms7->Modify_SPI_Reg_bits(LMS7param(HBD_OVR_RXTSP), 2);
lms7->Modify_SPI_Reg_bits(LMS7param(GFIR3_L_RXTSP), 7);
lms7->Modify_SPI_Reg_bits(LMS7param(GFIR3_N_RXTSP), 7);
lms7->SetGFIRCoefficients(LMS7002M::Rx, 2, firCoefs, sizeof(firCoefs) / sizeof(int16_t));
for (i=0;i<NUMBUFF;i++) {
trx_lms_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
trx_lms_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
}
write_output("calibrx.m","rxs",calib_buffp,RXDCLENGTH,1,1);
exit(-1);
for (meanIold=meanQold=i=j=0;i<RXDCLENGTH;i++) {
switch (i&3) {
case 0:
meanIold+=calib_buff[j++];
break;
case 1:
meanQold+=calib_buff[j++];
break;
case 2:
meanIold-=calib_buff[j++];
break;
case 3:
meanQold-=calib_buff[j++];
break;
}
}
// meanIold/=RXDCLENGTH;
// meanQold/=RXDCLENGTH;
printf("[LMS] TX DC (offI): %d => (%d,%d)\n",offIold,meanIold,meanQold);
offI=-128;
lms7->SPI_write(0x0204,(((int16_t)offI)<<7)|offQold);
for (i=0;i<NUMBUFF;i++) {
trx_lms_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
trx_lms_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
}
for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
switch (i&3) {
case 0:
meanI+=calib_buff[j++];
break;
case 1:
meanQ+=calib_buff[j++];
break;
case 2:
meanI-=calib_buff[j++];
break;
case 3:
meanQ-=calib_buff[j++];
break;
}
}
// meanI/=RXDCLENGTH;
// meanQ/=RXDCLENGTH;
printf("[LMS] TX DC (offI): %d => (%d,%d)\n",offI,meanI,meanQ);
cnt = 0;
while (cnt++ < 8) {
offInew=(offIold+offI)>>1;
if (meanI*meanI+meanQ*meanQ < meanIold*meanIold +meanQold*meanQold) {
printf("[LMS] TX DC (offI): ([%d,%d]) => %d : %d\n",offIold,offI,offInew,meanI*meanI+meanQ*meanQ);
meanIold = meanI;
meanQold = meanQ;
offIold = offI;
}
offI = offInew;
lms7->SPI_write(0x0204,(((int16_t)offI)<<7)|offQold);
for (i=0;i<NUMBUFF;i++) {
trx_lms_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
trx_lms_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
}
for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
switch (i&3) {
case 0:
meanI+=calib_buff[j++];
break;
case 1:
meanQ+=calib_buff[j++];
break;
case 2:
meanI-=calib_buff[j++];
break;
case 3:
meanQ-=calib_buff[j++];
break;
}
}
// meanI/=RXDCLENGTH;
// meanQ/=RXDCLENGTH;
// printf("[LMS] TX DC (offI): %d => (%d,%d)\n",offI,meanI,meanQ);
}
if (meanI*meanI+meanQ*meanQ < meanIold*meanIold +meanQold*meanQold) {
printf("[LMS] TX DC (offI): ([%d,%d]) => %d : %d\n",offIold,offI,offInew,meanI*meanI+meanQ*meanQ);
meanIold = meanI;
meanQold = meanQ;
offIold = offI;
}
offQ=-128;
lms7->SPI_write(0x0204,(((int16_t)offIold)<<7)|offQ);
for (i=0;i<NUMBUFF;i++) {
trx_lms_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
trx_lms_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
}
for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
switch (i&3) {
case 0:
meanI+=calib_buff[j++];
break;
case 1:
meanQ+=calib_buff[j++];
break;
case 2:
meanI-=calib_buff[j++];
break;
case 3:
meanQ-=calib_buff[j++];
break;
}
}
// meanI/=RXDCLENGTH;
// meanQ/=RXDCLENGTH;
printf("[LMS] TX DC (offQ): %d => (%d,%d)\n",offQ,meanI,meanQ);
cnt=0;
while (cnt++ < 8) {
offQnew=(offQold+offQ)>>1;
if (meanI*meanI+meanQ*meanQ < meanIold*meanIold +meanQold*meanQold) {
printf("[LMS] TX DC (offQ): ([%d,%d]) => %d : %d\n",offQold,offQ,offQnew,meanI*meanI+meanQ*meanQ);
meanIold = meanI;
meanQold = meanQ;
offQold = offQ;
}
offQ = offQnew;
lms7->SPI_write(0x0204,(((int16_t)offIold)<<7)|offQ);
for (i=0;i<NUMBUFF;i++) {
trx_lms_read(device, &ptimestamp, (void **)&calib_buffp, RXDCLENGTH, 0);
trx_lms_write(device,ptimestamp+5*RXDCLENGTH, (void **)&calib_tx_buffp, RXDCLENGTH, 0, 0);
}
for (meanI=meanQ=i=j=0;i<RXDCLENGTH;i++) {
switch (i&3) {
case 0:
meanI+=calib_buff[j++];
break;
case 1:
meanQ+=calib_buff[j++];
break;
case 2:
meanI-=calib_buff[j++];
break;
case 3:
meanQ-=calib_buff[j++];
break;
}
}
// meanI/=RXDCLENGTH;
// meanQ/=RXDCLENGTH;
// printf("[LMS] TX DC (offQ): %d => (%d,%d)\n",offQ,meanI,meanQ);
}
LMS_RxStop();
printf("[LMS] TX DC: (%d,%d) => (%d,%d)\n",offIold,offQold,meanIold,meanQold);
dccorri = offIold;
dccorrq = offQold;
lms7->RestoreAllRegisters();
lms7->Modify_SPI_Reg_bits(LMS7param(MAC), ch);
lms7->Modify_SPI_Reg_bits(LMS7param(DCOFFI_RFE), dcoffi);
lms7->Modify_SPI_Reg_bits(LMS7param(DCOFFQ_RFE), dcoffq);
lms7->Modify_SPI_Reg_bits(LMS7param(DCCORRI_TXTSP), dccorri);
lms7->Modify_SPI_Reg_bits(LMS7param(DCCORRQ_TXTSP), dccorrq);
// lms7->Modify_SPI_Reg_bits(LMS7param(GCORRI_TXTSP), gcorri);
// lms7->Modify_SPI_Reg_bits(LMS7param(GCORRQ_TXTSP), gcorrq);
// lms7->Modify_SPI_Reg_bits(LMS7param(IQCORR_TXTSP), iqcorr);
// lms7->Modify_SPI_Reg_bits(LMS7param(DC_BYP_TXTSP), 0); //DC_BYP
lms7->Modify_SPI_Reg_bits(0x0208, 1, 0, 0); //GC_BYP PH_BYP
}
*/
int trx_lms_set_gains(openair0_device* device, openair0_config_t *openair0_cfg) {
double gv = openair0_cfg[0].rx_gain[0] - openair0_cfg[0].rx_gain_offset[0];
if (gv > 31) {
printf("RX Gain 0 too high, reduce by %f dB\n",gv-31);
gv = 31;
}
if (gv < 0) {
printf("RX Gain 0 too low, increase by %f dB\n",-gv);
gv = 0;
}
printf("[LMS] Setting 7002M G_PGA_RBB to %d\n", (int16_t)gv);
lms7->Modify_SPI_Reg_bits(LMS7param(G_PGA_RBB),(int16_t)gv);
return(0);
}
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
int trx_lms_start(openair0_device *device){
LMS_Init(0, 128*1024);
usbport = LMS_GetUSBPort();
//connect data stream port
LMS_UpdateDeviceList(usbport);
const char *name = LMS_GetDeviceName(usbport, 0);
printf("Connecting to device: %s\n",name);
if (LMS_DeviceOpen(usbport, 0)==0)
{
Si = new Si5351C();
lms7 = new LMS7002M(usbport);
liblms7_status opStatus;
printf("Configuring Si5351C\n");
Si->Initialize(usbport);
Si->SetPLL(0, 25000000, 0);
Si->SetPLL(1, 25000000, 0);
Si->SetClock(0, 27000000, true, false);
Si->SetClock(1, 27000000, true, false);
for (int i = 2; i < 8; ++i)
Si->SetClock(i, 27000000, false, false);
Si5351C::Status status = Si->ConfigureClocks();
if (status != Si5351C::SUCCESS)
{
printf("Failed to configure Si5351C");
exit(-1);
}
status = Si->UploadConfiguration();
if (status != Si5351C::SUCCESS)
printf("Failed to upload Si5351C configuration");
lms7->ResetChip();
opStatus = lms7->LoadConfig(device->openair0_cfg[0].configFilename);
if (opStatus != LIBLMS7_SUCCESS) {
printf("Failed to load configuration file %s\n",device->openair0_cfg[0].configFilename);
exit(-1);
}
opStatus = lms7->UploadAll();
if (opStatus != LIBLMS7_SUCCESS) {
printf("Failed to upload configuration file\n");
exit(-1);
}
// Set TX filter
printf("Tuning TX filter\n");
opStatus = lms7->TuneTxFilter(LMS7002M::TxFilter::TX_HIGHBAND,device->openair0_cfg[0].tx_bw/1e6);
if (opStatus != LIBLMS7_SUCCESS) {
printf("Warning: Could not tune TX filter to %f MHz\n",device->openair0_cfg[0].tx_bw/1e6);
}
printf("Tuning RX filter\n");
opStatus = lms7->TuneRxFilter(LMS7002M::RxFilter::RX_LPF_LOWBAND,device->openair0_cfg[0].rx_bw/1e6);
if (opStatus != LIBLMS7_SUCCESS) {
printf("Warning: Could not tune RX filter to %f MHz\n",device->openair0_cfg[0].rx_bw/1e6);
/* printf("Tuning TIA filter\n");
opStatus = lms7->TuneRxFilter(LMS7002M::RxFilter::RX_TIA,7.0);
if (opStatus != LIBLMS7_SUCCESS) {
printf("Warning: Could not tune RX TIA filter\n");
opStatus = lms7->SetInterfaceFrequency(lms7->GetFrequencyCGEN_MHz(),
lms7->Get_SPI_Reg_bits(HBI_OVR_TXTSP),
lms7->Get_SPI_Reg_bits(HBD_OVR_RXTSP));
if (opStatus != LIBLMS7_SUCCESS) {
printf("SetInterfaceFrequency failed: %f,%d,%d\n",
lms7->GetFrequencyCGEN_MHz(),
lms7->Get_SPI_Reg_bits(HBI_OVR_TXTSP),
lms7->Get_SPI_Reg_bits(HBD_OVR_RXTSP));
}
else {
printf("SetInterfaceFrequency as %f,%d,%d\n",
lms7->GetFrequencyCGEN_MHz(),
lms7->Get_SPI_Reg_bits(HBI_OVR_TXTSP),
lms7->Get_SPI_Reg_bits(HBD_OVR_RXTSP));
}
lmsStream = new LMS_StreamBoard(usbport);
LMS_StreamBoard::Status opStreamStatus;
// this will configure that sampling rate at output of FPGA
opStreamStatus = lmsStream->ConfigurePLL(usbport,
device->openair0_cfg[0].sample_rate,
device->openair0_cfg[0].sample_rate,90);
if (opStatus != LIBLMS7_SUCCESS){
printf("Sample rate programming failed\n");
exit(-1);
}
opStatus = lms7->SetFrequencySX(LMS7002M::Tx, device->openair0_cfg[0].tx_freq[0]/1e6,30.72);
if (opStatus != LIBLMS7_SUCCESS) {
printf("Cannot set TX frequency %f MHz\n",device->openair0_cfg[0].tx_freq[0]/1e6);
exit(-1);
}
else {
printf("Set TX frequency %f MHz\n",device->openair0_cfg[0].tx_freq[0]/1e6);
}
opStatus = lms7->SetFrequencySX(LMS7002M::Rx, device->openair0_cfg[0].rx_freq[0]/1e6,30.72);
if (opStatus != LIBLMS7_SUCCESS) {
printf("Cannot set RX frequency %f MHz\n",device->openair0_cfg[0].rx_freq[0]/1e6);
exit(-1);
}
else {
printf("Set RX frequency %f MHz\n",device->openair0_cfg[0].rx_freq[0]/1e6);
}
trx_lms_set_gains(device, device->openair0_cfg);
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
// Run calibration procedure
// calibrate_rf(device);
//lms7->CalibrateTx(5.0);
LMS_RxStart();
}
else
{
return(-1);
}
//connect control port
/* comport = LMS_GetCOMPort();
LMS_UpdateDeviceList(comport);
name = LMS_GetDeviceName(comport, 0);
if (*name == 0)
comport = usbport; //attempt to use data port
else
{
printf("Connecting to device: %s\n",name);
if (LMS_DeviceOpen(comport, 0)!=0)
return (-1);
}
lms7 = new LMS7002M(comport);
if( access( "./config.ini", F_OK ) != -1 ) //load config file
lms7->LoadConfig("./config.ini");
//calibration takes too long
//lms7->CalibrateRx(5.0);
//lms7->CalibrateTx(5.0);
*/
return 0;
}
int trx_lms_stop(int card) {
/*
LMS_DeviceClose(usbport);
LMS_DeviceClose(comport);
delete lms7;
return LMS_Destroy();
*/
}
int trx_lms_set_freq(openair0_device* device, openair0_config_t *openair0_cfg,int exmimo_dump_config) {
//Control port must be connected
lms7->SetFrequencySX(LMS7002M::Tx,openair0_cfg->tx_freq[0]/1e6,30.72);
lms7->SetFrequencySX(LMS7002M::Rx,openair0_cfg->rx_freq[0]/1e6,30.72);
printf ("[LMS] rx frequency:%f;\n",openair0_cfg->rx_freq[0]/1e6);
set_rx_gain_offset(openair0_cfg,0);
return(0);
}
// 31 = 19 dB => 105 dB total gain @ 2.6 GHz
rx_gain_calib_table_t calib_table_sodera[] = {
{3500000000.0,70.0},
{2660000000.0,80.0},
{2300000000.0,80.0},
{1880000000.0,74.0}, // on W PAD
{816000000.0,76.0}, // on W PAD
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
{-1,0}};
int trx_lms_get_stats(openair0_device* device) {
return(0);
}
int trx_lms_reset_stats(openair0_device* device) {
return(0);
}
int openair0_set_gains(openair0_device* device,
openair0_config_t *openair0_cfg) {
return(0);
}
int openair0_set_frequencies(openair0_device* device, openair0_config_t *openair0_cfg, int dummy) {
return(0);
}
void trx_lms_end(openair0_device *device) {
}

Florian Kaltenberger
committed
extern "C" {
/*! \brief Initialize Openair LMSSDR target. It returns 0 if OK
* \param device the hardware to use
* \param openair0_cfg RF frontend parameters set by application
*/
int device_init(openair0_device *device, openair0_config_t *openair0_cfg){

Florian Kaltenberger
committed
printf("LMSSDR: Initializing openair0_device for %s ...\n", ((device->host_type == BBU_HOST) ? "BBU": "RRH"));
switch ((int)openair0_cfg[0].sample_rate) {
case 30720000:
// from usrp_time_offset
openair0_cfg[0].samples_per_packet = 2048;
openair0_cfg[0].tx_sample_advance = 15;
openair0_cfg[0].tx_bw = 30.72e6;
openair0_cfg[0].rx_bw = 30.72e6;
openair0_cfg[0].tx_scheduling_advance = 8*openair0_cfg[0].samples_per_packet;
break;
case 15360000:
openair0_cfg[0].samples_per_packet = 2048;
openair0_cfg[0].tx_sample_advance = 45;
openair0_cfg[0].tx_bw = 28e6;
openair0_cfg[0].rx_bw = 10e6;
openair0_cfg[0].tx_scheduling_advance = 8*openair0_cfg[0].samples_per_packet;
break;
case 7680000:
openair0_cfg[0].samples_per_packet = 1024;
openair0_cfg[0].tx_sample_advance = 70;
openair0_cfg[0].tx_bw = 28e6;
openair0_cfg[0].rx_bw = 5.0e6;
openair0_cfg[0].tx_scheduling_advance = 8*openair0_cfg[0].samples_per_packet;
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
break;
case 1920000:
openair0_cfg[0].samples_per_packet = 256;
openair0_cfg[0].tx_sample_advance = 50;
openair0_cfg[0].tx_bw = 1.25e6;
openair0_cfg[0].rx_bw = 1.25e6;
openair0_cfg[0].tx_scheduling_advance = 8*openair0_cfg[0].samples_per_packet;
break;
default:
printf("Error: unknown sampling rate %f\n",openair0_cfg[0].sample_rate);
exit(-1);
break;
}
openair0_cfg[0].rx_gain_calib_table = calib_table_sodera;
set_rx_gain_offset(openair0_cfg,0);
device->Mod_id = 1;
device->trx_start_func = trx_lms_start;
device->trx_write_func = trx_lms_write;
device->trx_read_func = trx_lms_read;
device->trx_get_stats_func = trx_lms_get_stats;
device->trx_reset_stats_func = trx_lms_reset_stats;
device->trx_end_func = trx_lms_end;
device->trx_stop_func = trx_lms_stop;
device->trx_set_freq_func = trx_lms_set_freq;
device->trx_set_gains_func = trx_lms_set_gains;
device->openair0_cfg = openair0_cfg;
return 0;
}